Imperial College London

Professor Andy Purvis

Faculty of Natural SciencesDepartment of Life Sciences (Silwood Park)

Research Investigator
 
 
 
//

Contact

 

+44 (0)20 7942 5686a.purvis Website

 
 
//

Location

 

Silwood ParkSilwood Park

//

Summary

 

Publications

Publication Type
Year
to

195 results found

Jung M, Rowhani P, Newbold T, Bentley L, Purvis A, Scharlemann JPWet al., 2019, Local species assemblages are influenced more by past than current dissimilarities in photosynthetic activity, Ecography, ISSN: 0906-7590

© 2018 The Authors Most land on Earth has been changed by humans and past changes of land can have lasting influences on current species assemblages. Yet few globally representative studies explicitly consider such influences even though auxiliary data, such as from remote sensing, are readily available. Time series of satellite-derived data have been commonly used to quantify differences in land-surface attributes such as vegetation cover, which will among other things be influenced by anthropogenic land conversions and modifications. Here we quantify differences in current and past (up to five years before sampling) vegetation cover, and assess whether such differences differentially influence taxonomic and functional groups of species assemblages between spatial pairs of sites. Specifically, we correlated between-site dissimilarity in photosynthetic activity of vegetation (the enhanced vegetation index) with the corresponding dissimilarity in local species assemblage composition from a global database using a common metric for both, the Bray–Curtis index. We found that dissimilarity in species assemblage composition was on average more influenced by dissimilarity in past than current photosynthetic activity, and that the influence of past dissimilarity increased when longer time periods were considered. Responses to past dissimilarity in photosynthetic activity also differed among taxonomic groups (plants, invertebrates, amphibians, reptiles, birds and mammals), with reptiles being among the most influenced by more dissimilar past photosynthetic activity. Furthermore, we found that assemblages dominated by smaller and more vegetation-dependent species tended to be more influenced by dissimilarity in past photosynthetic activity than prey-dependent species. Overall, our results have implications for studies that investigate species responses to current environmental changes and highlight the importance of past changes continuing to influence local speci

Journal article

Newbold T, Hudson LN, Contu S, Hill SLL, Beck J, Liu Y, Meyer C, Phillips HRP, Scharlemann JPW, Purvis Aet al., 2018, Widespread winners and narrow-ranged losers: Land use homogenizes biodiversity in local assemblages worldwide, PLOS BIOLOGY, Vol: 16, ISSN: 1545-7885

Journal article

Kim H, Rosa IMD, Alkemade R, Leadley P, Hurtt G, Popp A, van Vuuren DP, Anthoni P, Arneth A, Baisero D, Caton E, Chaplin-Kramer R, Chini L, De Palma A, Di Fulvio F, Di Marco M, Espinoza F, Ferrier S, Fujimori S, Gonzalez RE, Gueguen M, Guerra C, Harfoot M, Harwood TD, Hasegawa T, Haverd V, Havlik P, Hellweg S, Hill SLL, Hirata A, Hoskins AJ, Janse JH, Jetz W, Johnson JA, Krause A, Leclere D, Martins IS, Matsui T, Merow C, Obersteiner M, Ohashi H, Poulter B, Purvis A, Quesada B, Rondinini C, Schipper AM, Sharp R, Takahashi K, Thuiller W, Titeux N, Visconti P, Ware C, Wolf F, Pereira HMet al., 2018, A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios, Geoscientific Model Development, Vol: 11, Pages: 4537-4562, ISSN: 1991-959X

To support the assessments of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), the IPBES Expert Group on Scenarios and Models is carrying out an intercomparison of biodiversity and ecosystem services models using harmonized scenarios (BES-SIM). The goals of BES-SIM are (1) to project the global impacts of land-use and climate change on biodiversity and ecosystem services (i.e., nature's contributions to people) over the coming decades, compared to the 20th century, using a set of common metrics at multiple scales, and (2) to identify model uncertainties and research gaps through the comparisons of projected biodiversity and ecosystem services across models. BES-SIM uses three scenarios combining specific Shared Socio-economic Pathways (SSPs) and Representative Concentration Pathways (RCPs) – SSP1xRCP2.6, SSP3xRCP6.0, SSP5xRCP8.6 – to explore a wide range of land-use change and climate change futures. This paper describes the rationale for scenario selection, the process of harmonizing input data for land use, based on the second phase of the Land Use Harmonization Project (LUH2), and climate, the biodiversity and ecosystem services models used, the core simulations carried out, the harmonization of the model output metrics, and the treatment of uncertainty. The results of this collaborative modeling project will support the ongoing global assessment of IPBES, strengthen ties between IPBES and the Intergovernmental Panel on Climate Change (IPCC) scenarios and modeling processes, advise the Convention on Biological Diversity (CBD) on its development of a post-2020 strategic plans and conservation goals, and inform the development of a new generation of nature-centred scenarios.

Journal article

Fenton IS, Baranowski U, Boscolo-Galazzo F, Cheales H, Fox L, King DJ, Larkin C, Latas M, Liebrand D, Miller CG, Nilsson-Kerr K, Piga E, Pugh H, Remmelzwaal S, Roseby ZA, Smith YM, Stukins S, Taylor B, Woodhouse A, Worne S, Pearson PN, Poole CR, Wade BS, Purvis Aet al., 2018, Factors affecting consistency and accuracy in identifying modern macroperforate planktonic foraminifera, Journal of Micropalaeontology, Vol: 37, Pages: 431-443, ISSN: 0262-821X

Planktonic foraminifera are widely used in biostratigraphic, palaeoceanographic and evolutionary studies, but the strength of many study conclusions could be weakened if taxonomic identifications are not reproducible by different workers. In this study, to assess the relative importance of a range of possible reasons for among-worker disagreement in identification, 100 specimens of 26 species of macroperforate planktonic foraminifera were selected from a core-top site in the subtropical Pacific Ocean. Twenty-three scientists at different career stages – including some with only a few days experience of planktonic foraminifera – were asked to identify each specimen to species level, and to indicate their confidence in each identification. The participants were provided with a species list and had access to additional reference materials. We use generalised linear mixed-effects models to test the relevance of three sets of factors in identification accuracy: participant-level characteristics (including experience), species-level characteristics (including a participant's knowledge of the species) and specimen-level characteristics (size, confidence in identification). The 19 less experienced scientists achieve a median accuracy of 57 %, which rises to 75 % for specimens they are confident in. For the 4 most experienced participants, overall accuracy is 79 %, rising to 93 % when they are confident. To obtain maximum comparability and ease of analysis, everyone used a standard microscope with only 35× magnification, and each specimen was studied in isolation. Consequently, these data provide a lower limit for an estimate of consistency. Importantly, participants could largely predict whether their identifications were correct or incorrect: their own assessments of specimen-level confidence and of their previous knowledge of species concepts were the strongest predictors of accuracy.

Journal article

Mace GM, Barrett M, Burgess ND, Cornell SE, Freeman R, Grooten M, Purvis Aet al., 2018, Aiming higher to bend the curve of biodiversity loss, Nature Sustainability, Vol: 1, Pages: 448-451

© 2018, The Publisher. The development of the post-2020 strategic plan for the Convention on Biological Diversity provides a vital window of opportunity to set out an ambitious plan of action to restore global biodiversity. The components of such a plan, including its goal, targets and some metrics, already exist and provide a roadmap to 2050.

Journal article

Jones KE, Purvis A, 2018, Ben Collen (1978-2018) obituary, NATURE ECOLOGY & EVOLUTION, Vol: 2, Pages: 1199-1200, ISSN: 2397-334X

Journal article

Phillips HRP, Halley JM, Urbina-Cardona JN, Purvis Aet al., 2018, The effect of fragment area on site-level biodiversity, ECOGRAPHY, Vol: 41, Pages: 1220-1231, ISSN: 0906-7590

Journal article

Purvis A, Newbold T, De Palma A, Contu S, Hill SLL, Sanchez-Ortiz K, Phillips HRP, Hudson LN, Lysenko I, Borger L, Scharlemann JPWet al., 2018, Modelling and Projecting the Response of Local Terrestrial Biodiversity Worldwide to Land Use and Related Pressures: The PREDICTS Project, NEXT GENERATION BIOMONITORING, PT 1, Vol: 58, Pages: 201-241, ISSN: 0065-2504

Journal article

De Palma A, Sanchez-Ortiz K, Martin PA, Chadwick A, Gilbert G, Bates AE, Borger L, Contu S, Hill SLL, Purvis Aet al., 2018, Challenges With Inferring How Land-Use Affects Terrestrial Biodiversity: Study Design, Time, Space and Synthesis, NEXT GENERATION BIOMONITORING, PT 1, Editors: Bohan, Dumbrell, Woodward, Jackson, Publisher: ELSEVIER ACADEMIC PRESS INC, Pages: 163-199

Book chapter

Phillips HRP, Knapp S, Purvis A, 2017, Estimating the potential biodiversity impact of redeveloping small urban spaces: the Natural History Museum's grounds, PEERJ, Vol: 5, ISSN: 2167-8359

Journal article

Rosa IMD, Pereira HM, Ferrier S, Alkemade R, Acosta LA, Akcakaya HR, den Belder E, Fazel AM, Fujimori S, Harfoot M, Harhash KA, Harrison PA, Hauck J, Hendriks RJJ, Hernandez G, Jetz W, Karlsson-Vinkhuyzen SI, Kim H, King N, Kok MTJ, Kolomytsev GO, Lazarova T, Leadley P, Lundquist CJ, Marquez JG, Meyer C, Navarro LM, Nesshoever C, Ngo HT, Ninan KN, Palomo MG, Pereira LM, Peterson GD, Pichs R, Popp A, Purvis A, Ravera F, Rondinini C, Sathyapalan J, Schipper AM, Seppelt R, Settele J, Sitas N, van Vuuren Det al., 2017, Multiscale scenarios for nature futures, NATURE ECOLOGY & EVOLUTION, Vol: 1, Pages: 1416-1419, ISSN: 2397-334X

Journal article

De Palma A, Kuhlmann M, Bugter R, Ferrier S, Hoskins AJ, Potts SG, Roberts SPM, Schweiger O, Purvis Aet al., 2017, Dimensions of biodiversity loss: spatial mismatch in land-use impacts on species, functional and phylogenetic diversity of European bees, Diversity and Distributions, Vol: 23, Pages: 1435-1446, ISSN: 1366-9516

AimAgricultural intensification and urbanization are important drivers of biodiversity change in Europe. Different aspects of bee community diversity vary in their sensitivity to these pressures, as well as independently influencing ecosystem service provision (pollination). To obtain a more comprehensive understanding of human impacts on bee diversity across Europe, we assess multiple, complementary indices of diversity.LocationOne Thousand four hundred and forty six sites across Europe.MethodsWe collated data on bee occurrence and abundance from the published literature and supplemented them with the PREDICTS database. Using Rao's Quadratic Entropy, we assessed how species, functional and phylogenetic diversity of 1,446 bee communities respond to land-use characteristics including land-use class, cropland intensity, human population density and distance to roads. We combined these models with statistically downscaled estimates of land use in 2005 to estimate and map—at a scale of approximately 1 km2—the losses in diversity relative to semi-natural/natural baseline (the predicted diversity of an uninhabited grid square, consisting only of semi-natural/natural vegetation).ResultsWe show that—relative to the predicted local diversity in uninhabited semi-natural/natural habitat—half of all EU27 countries have lost over 10% of their average local species diversity and two-thirds of countries have lost over 5% of their average local functional and phylogenetic diversity. All diversity measures were generally lower in pasture and higher-intensity cropland than in semi-natural/natural vegetation, but facets of diversity showed less consistent responses to human population density. These differences have led to marked spatial mismatches in losses: losses in phylogenetic diversity were in some areas almost 20 percentage points (pp.) more severe than losses in species diversity, but in other areas losses were almost 40 pp. less severe.Main conclusions

Journal article

Phillips, Newbold T, Purvis A, 2017, Land-use effects on local biodiversity in tropical forests vary between continents, Biodiversity and Conservation, Vol: 26, Pages: 2251-2270, ISSN: 1572-9710

Land-use change is one of the greatest threats to biodiversity, especially in the tropics where secondary and plantation forests are expanding while primary forest is declining. Understanding how well these disturbed habitats maintain biodiversity is therefore important—specifically how the maturity of secondary forest and the management intensity of plantation forest affect levels of biodiversity. Previous studies have shown that the biotas of different continents respond differently to land use. Any continental differences in the response could be due to differences in land-use intensity and maturity of secondary vegetation or to differences among species in their sensitivity to disturbances. We tested these hypotheses using an extensive dataset collated from published biodiversity comparisons within four tropical regions—Asia, Africa, Central America and South America—and a wide range of animal and plant taxa. We analysed responses to land use of several aspects of biodiversity—species richness, species composition and endemicity—allowing a more detailed comparison than in previous syntheses. Within each continent, assemblages from secondary vegetation of all successional stages retained species richness comparable to those in primary vegetation, but community composition was distinct, especially in younger secondary vegetation. Plantation forests, particularly the most intensively managed, supported a smaller—and very distinct—set of species from sites in primary vegetation. Responses to land use did vary significantly among continents, with the biggest difference in richness between plantation and primary forests in Asia. Responses of individual taxonomic groups did not differ strongly among continents, giving little indication that species were inherently more sensitive in Asia than elsewhere. We show that oil palm plantations support particularly low species richness, indicating that continental differences in the res

Journal article

Jung M, Hill SLL, Platts PJ, Marchant R, Siebert S, Fournier A, Munyekenye FB, Purvis A, Burgess ND, Newbold Tet al., 2016, Local factors mediate the response of biodiversity to land use on two African mountains, Animal Conservation, Vol: 20, Pages: 370-381, ISSN: 1469-1795

Land-use change is the single biggest driver of biodiversity loss in the tropics. Biodiversity models can be useful tools to inform policymakers and conservationists of the likely response of species to anthropogenic pressures, including land-use change. However, such models generalize biodiversity responses across wide areas and many taxa, potentially missing important characteristics of particular sites or clades. Comparisons of biodiversity models with independently collected field data can help us understand the local factors that mediate broad-scale responses. We collected independent bird occurrence and abundance data along two elevational transects in Mount Kilimanjaro, Tanzania and the Taita Hills, Kenya. We estimated the local response to land use and compared our estimates with modelled local responses based on a large database of many different taxa across Africa. To identify the local factors mediating responses to land use, we compared environmental and species assemblage information between sites in the independent and African-wide datasets. Bird species richness and abundance responses to land use in the independent data followed similar trends as suggested by the African-wide biodiversity model, however the land-use classification was too coarse to capture fully the variability introduced by local agricultural management practices. A comparison of assemblage characteristics showed that the sites on Kilimanjaro and the Taita Hills had higher proportions of forest specialists in croplands compared to the Africa-wide average. Local human population density, forest cover and vegetation greenness also differed significantly between the independent and Africa-wide datasets. Biodiversity models including those variables performed better, particularly in croplands, but still could not accurately predict the magnitude of local species responses to most land uses, probably because local features of the land management are still missed. Overall, our study demon

Journal article

Rillo MC, Whittaker J, Ezard THG, Purvis A, Henderson AS, Stukins S, Miller CGet al., 2016, The unknown planktonic foraminiferal pioneer Henry A. Buckley and his collection at The Natural History Museum, London, Journal of Micropalaeontology, Vol: 36, Pages: 191-194, ISSN: 0262-821X

The Henry Buckley Collection of Planktonic Foraminifera at the Natural History Museum in London (NHMUK) consists of 1665 single-taxon slides housing 23 897 individuals from 203 sites in all the major ocean basins, as well as a vast research library of Scanning Electron Microscope (SEM) photomicrographs. Buckley picked the material from the NHMUK Ocean-Bottom Deposit Collection and also from fresh tow samples. However, his collection remains largely unused as he was discouraged by his managers in the Mineralogy Department from working on or publicizing the collection. Nevertheless, Buckley published pioneering papers on isotopic interpretation of oceanographic and climatic change and was one of the first workers to investigate foraminiferal wall structure using the SEM technique. Details of the collection and images of each slide are available via the NHMUK Data Portal (http://dx.doi.org/10.5519/0035055). The Buckley Collection and its associated Ocean-Bottom Deposit Collection have great potential for taxon-specific studies as well as geochemical work, and both collections are available on request.

Journal article

Hudson LN, Newbold T, Contu S, Hill SL, Lysenko I, De Palma A, Phillips HR, Alhusseini TI, Bedford FE, Bennett DJ, Booth H, Burton VJ, Chng CW, Choimes A, Correia DL, Day J, Echeverría-Londoño S, Emerson SR, Gao D, Garon M, Harrison ML, Ingram DJ, Jung M, Kemp V, Kirkpatrick L, Martin CD, Pan Y, Pask-Hale GD, Pynegar EL, Robinson AN, Sanchez-Ortiz K, Senior RA, Simmons BI, White HJ, Zhang H, Aben J, Abrahamczyk S, Adum GB, Aguilar-Barquero V, Aizen MA, Albertos B, Alcala EL, Del Mar Alguacil M, Alignier A, Ancrenaz M, Andersen AN, Arbeláez-Cortés E, Armbrecht I, Arroyo-Rodríguez V, Aumann T, Axmacher JC, Azhar B, Azpiroz AB, Baeten L, Bakayoko A, Báldi A, Banks JE, Baral SK, Barlow J, Barratt BI, Barrico L, Bartolommei P, Barton DM, Basset Y, Batáry P, Bates AJ, Baur B, Bayne EM, Beja P, Benedick S, Berg Å, Bernard H, Berry NJ, Bhatt D, Bicknell JE, Bihn JH, Blake RJ, Bobo KS, Bóçon R, Boekhout T, Böhning-Gaese K, Bonham KJ, Borges PA, Borges SH, Boutin C, Bouyer J, Bragagnolo C, Brandt JS, Brearley FQ, Brito I, Bros V, Brunet J, Buczkowski G, Buddle CM, Bugter R, Buscardo E, Buse J, Cabra-García J, Cáceres NC, Cagle NL, Calviño-Cancela M, Cameron SA, Cancello EM, Caparrós R, Cardoso P, Carpenter D, Carrijo TF, Carvalho AL, Cassano CR, Castro H, Castro-Luna AA, Rolando CB, Cerezo A, Chapman KA, Chauvat M, Christensen M, Clarke FM, Cleary DF, Colombo G, Connop SP, Craig MD, Cruz-López L, Cunningham SA, D'Aniello B, D'Cruze N, da Silva PG, Dallimer M, Danquah E, Darvill B, Dauber J, Davis AL, Dawson J, de Sassi C, de Thoisy B, Deheuvels O, Dejean A, Devineau JL, Diekötter T, Dolia JV, Domínguez E, Dominguez-Haydar Y, Dorn S, Draper I, Dreber N, Dumont B, Dures SG, Dynesius M, Edenius L, Eggleton P, Eigenbrod F, Elek Z, Entling MH, Esler KJ, de Lima RF, Faruk A, Farwig N, Fayle TM, Felicioli A, Felton AM, Fensham RJ, Fernandez IC, Ferreira CC, Ficetola GF, Fiera C, Filgueiras BK, Fırıncıoğlu HK, Flaspohler D, Floren A, Fonte SJ, Fournier A, Fowler RE, Franzén M, Fraseret al., 2016, The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project, Ecology and Evolution, Vol: 7, Pages: 145-188, ISSN: 2045-7758

The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.

Journal article

Fenton I, Pearson PN, Dunkley Jones T, Purvis Aet al., 2016, Environmental predictors of diversity in recent planktonic foraminifera as recorded in marine sediments, PLOS One, Vol: 11, ISSN: 1932-6203

Global diversity patterns are thought to result from a combination of environmental and historical factors. This study tests the set of ecological and evolutionary hypotheses proposed to explain the global variation in present-day coretop diversity in the macroperforate planktonic foraminifera, a clade with an exceptional fossil record. Within this group, marine surface sediment assemblages are thought to represent an accurate, although centennial to millennial time-averaged, representation of recent diversity patterns. Environmental variables chosen to capture ocean temperature, structure, productivity and seasonality were used to model a range of diversity measures across the world’s oceans. Spatial autoregressive models showed that the same broad suite of environmental variables were important in shaping each of the four largely independent diversity measures (rarefied species richness, Simpson’s evenness, functional richness and mean evolutionary age). Sea-surface temperature explains the largest portion of diversity in all four diversity measures, but not in the way predicted by the metabolic theory of ecology. Vertical structure could be linked to increased diversity through the strength of stratification, but not through the depth of the mixed layer. There is limited evidence that seasonal turnover explains diversity patterns. There is evidence for functional redundancy in the low-latitude sites. The evolutionary mechanism of deep-time stability finds mixed support whilst there is relatively little evidence for an out-of-the-tropics model. These results suggest the diversity patterns of planktonic foraminifera cannot be explained by any one environmental variable or proposed mechanism, but instead reflect multiple processes acting in concert.

Journal article

Hill SLL, Harfoot M, Purvis A, Purves DW, Collen B, Newbold T, Burgess ND, Mace GMet al., 2016, Reconciling biodiversity indicators to guide understanding and action, Conservation Letters, Vol: 9, Pages: 405-412, ISSN: 1755-263X

Many metrics can be used to capture trends in biodiversity and, in turn, these metrics inform biodiversity indicators. Sampling biases, genuine differences between metrics, or both, can often cause indicators to appear to be in conflict. This lack of congruence confuses policy makers and the general public, hindering effective responses to the biodiversity crisis. We show how different and seemingly inconsistent metrics of biodiversity can, in fact, emerge from the same scenario of biodiversity change. We develop a simple, evidence-based narrative of biodiversity change and implement it in a simulation model. The model demonstrates how, for example, species richness can remain stable in a given landscape, whereas other measures (e.g. compositional similarity) can be in sharp decline. We suggest that linking biodiversity metrics in a simple model will support more robust indicator development, enable stronger predictions of biodiversity change, and provide policy-relevant advice at a range of scales.

Journal article

Echeverría-Londoño S, Newbold T, Hudson LN, Contu S, Hill SLL, Lysenko I, Arbeláez-Cortés E, Armbrecht I, Boekhout T, Cabra-García J, Dominguez-Haydar Y, Nates-Parra G, Gutiérrez-Lamus DL, Higuera D, Isaacs-Cubides PJ, López-Quintero CA, Martinez E, Miranda-Esquivel DR, Navarro-Iriarte LE, Noriega JA, Otavo SE, Parra-H A, Poveda K, Ramirez-Pinilla MP, Rey-Velasco JC, Rosselli L, Smith-Pardo AH, Urbina-Cardona JN, Purvis A, Visconti Pet al., 2016, Modelling and projecting the response of local assemblage composition to land use change across Colombia, Diversity and Distributions, Vol: 22, Pages: 1099-1111, ISSN: 1366-9516

Understanding the impact of land use change within assemblages is fundamental to mitigation policies at local and regional scale. Here, we aim to quantify how site-level terrestrial assemblages are responding to land use change in Colombia a mega-diverse country and to project future biodiversity under different scenarios of land use change associated with climate change policies. Location: Colombia (northern South America). Methods: We collated original biodiversity data from 17 publications (285 sites) that examined how human impact affects terrestrial biodiversity in Colombia. From each site we estimated compositional intactness (i.e. compositional similarity to undisturbed sites). We fitted generalized linear mixed-effects models to estimate how these measures of local biodiversity vary across land use habitats. Using space-for-time substitution, we applied our estimates to hindcast biodiversity changes since 1500 and project future changes under climate change policies of the four representative concentration pathways (RCPs). Results: Assemblages in urban, cropland and pasture sites were compositionally very different from those in primary vegetation. We infer that average compositional intactness has been reduced by 18% across Colombia to date, with strong regional variation. The best RCP scenario for future biodiversity is GCAM-RCP4.5, a path that favours the expansion of secondary forests under a strong carbon market; while the worst is MESSAGE-RCP8.5, ‘the business-as-usual’ scenario. Main conclusions: Land use change has driven an increasing change in the composition of ecological assemblages in Colombia. By 2095, the implementation of carbon markets policy of climate change from GCAM-RCP4.5 could mitigate these changes in community composition. In contrast, the business-as-usual scenario MESSAGE-RCP8.5 predicts a steep community change placing the quality of ecosystems at risk.

Journal article

De Palma A, Purvis A, 2016, Predicting bee community responses to land-use changes: effects of geographic and taxonomic biases, Scientific Reports, Vol: 6, ISSN: 2045-2322

Land-use change and intensification threaten bee populations worldwide, imperilling pollination services. Global models are needed to better characterise, project, and mitigate bees' responses to these human impacts. The available data are, however, geographically and taxonomically unrepresentative; most data are from North America and Western Europe, overrepresenting bumblebees and raising concerns that model results may not be generalizable to other regions and taxa. To assess whether the geographic and taxonomic biases of data could undermine effectiveness of models for conservation policy, we have collated from the published literature a global dataset of bee diversity at sites facing land-use change and intensification, and assess whether bee responses to these pressures vary across 11 regions (Western, Northern, Eastern and Southern Europe; North, Central and South America; Australia and New Zealand; South East Asia; Middle and Southern Africa) and between bumblebees and other bees. Our analyses highlight strong regionally-based responses of total abundance, species richness and Simpson's diversity to land use, caused by variation in the sensitivity of species and potentially in the nature of threats. These results suggest that global extrapolation of models based on geographically and taxonomically restricted data may underestimate the true uncertainty, increasing the risk of ecological surprises.

Journal article

Gray CL, Hill SLL, Newbold T, Hudson LN, Borger L, Contu S, Hoskins AJ, Ferrier S, Purvis A, Scharlemann JPWet al., 2016, Local biodiversity is higher inside than outside terrestrial protected areas worldwide, Nature Communications, Vol: 7, ISSN: 2041-1723

Protected areas are widely considered essential for biodiversity conservation. However, few global studies have demonstrated that protection benefits a broad range of species. Here, using a new global biodiversity database with unprecedented geographic and taxonomic coverage, we compare four biodiversity measures at sites sampled in multiple land uses inside and outside protected areas. Globally, species richness is 10.6% higher and abundance 14.5% higher in samples taken inside protected areas compared with samples taken outside, but neither rarefaction-based richness nor endemicity differ significantly. Importantly, we show that the positive effects of protection are mostly attributable to differences in land use between protected and unprotected sites. Nonetheless, even within some human-dominated land uses, species richness and abundance are higher in protected sites. Our results reinforce the global importance of protected areas but suggest that protection does not consistently benefit species with small ranges or increase the variety of ecological niches.

Journal article

Newbold T, Hudson LN, Arnell AP, Contu S, De Palma A, Ferrier S, Hill SLL, Hoskins A, Lysenko I, Phillips HRP, Burton VJ, Chng CWT, Emerson S, Gao D, Pask-Hale G, Hutton J, Jung M, Sanchez Ortiz K, Simmons BI, Whitmee S, Zhang H, Scharlemann JPW, Purvis A, Purvis Aet al., 2016, Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment, Science, Vol: 353, Pages: 288-291, ISSN: 0036-8075

Land use and related pressures have reduced local terrestrial biodiversity, but it is unclear how the magnitude of change relates to the recently proposed planetary boundary (‘safe limit’). We estimate that land use and related pressures have already reduced local biodiversity intactness – the average proportion of natural biodiversity remaining in local ecosystems – beyond its recently-proposed planetary boundary across 58.1% of the world’s land surface, where 71.4% of the human population live. Biodiversity intactness within most biomes (especially grassland biomes), most biodiversity hotspots, and even some wilderness areas, is inferred to be beyond the boundary. Such widespread transgression of safe limits suggests that biodiversity loss, if unchecked, will undermine efforts towards long-term sustainable development.

Journal article

Ezard THG, Purvis A, 2016, Environmental changes define ecological limits to speciesrichness and reveal the mode of macroevolutionary competition, Ecology Letters, Vol: 19, Pages: 899-906, ISSN: 1461-0248

Co-dependent geological and climatic changes obscure how species interact in deep time. The interplay between these environmental factors makes it hard to discern whether ecological competition exerts an upper limit on species richness. Here, using the exceptional fossil record of Cenozoic Era macroperforate planktonic foraminifera, we assess the evidence for alternative modes of macroevolutionary competition. Our models support an environmentally dependent macroevolutionary form of contest competition that yields finite upper bounds on species richness. Models of biotic competition assuming unchanging environmental conditions were overwhelmingly rejected. In the best-supported model, temperature affects the per-lineage diversification rate, while both temperature and an environmental driver of sediment accumulation defines the upper limit. The support for contest competition implies that incumbency constrains species richness by restricting niche availability, and that the number of macroevolutionary niches varies as a function of environmental changes.

Journal article

Fenton I, Perason PN, Dunkley Jones T, Farnsworth A, Lunt D, Markwick P, Purvis Aet al., 2016, The impact of Cenozoic cooling on assemblage diversity in planktonic foraminifera, Philosophical Transactions of the Royal Society B: Biological Sciences, Vol: 371, ISSN: 1471-2970

The Cenozoic planktonic foraminifera (PF) (calcareous zooplankton) have arguably the most detailed fossil record of any group. The quality of this record allows models of environmental controls on macroecology, developed for Recent assemblages, to be tested on intervals with profoundly different climatic conditions. These analyses shed light on the role of long-term global cooling in establishing the modern latitudinal diversity gradient (LDG)—one of the most powerful generalizations in biogeography and macroecology. Here, we test the transferability of environment-diversity models developed for modern PF assemblages to the Eocene epoch (approx. 56–34 Ma), a time of pronounced global warmth. Environmental variables from global climate models are combined with Recent environment–diversity models to predict Eocene richness gradients, which are then compared with observed patterns. The results indicate the modern LDG—lower richness towards the poles—developed through the Eocene. Three possible causes are suggested for the mismatch between statistical model predictions and data in the Early Eocene: the environmental estimates are inaccurate, the statistical model misses a relevant variable, or the intercorrelations among facets of diversity—e.g. richness, evenness, functional diversity—have changed over geological time. By the Late Eocene, environment–diversity relationships were much more similar to those found today.

Journal article

Newbold T, Hudson LN, Hill SLL, Contu S, Gray CL, Scharlemann JPW, Börger L, Phillips HRP, Sheil D, Lysenko I, Purvis Aet al., 2016, Global patterns of terrestrial assemblage turnover within and among land uses, Ecography, Vol: 39, Pages: 1151-1163, ISSN: 1600-0587

Land use has large effects on the diversity of ecological assemblages. Differences among land uses in the diversity of local assemblages (alpha diversity) have been quantified at a global scale. Effects on the turnover of species composition between locations (beta diversity) are less clear, with previous studies focusing on particular regions or groups of species. Using a global database on the composition of ecological assemblages in different land uses, we test for differences in the between-site turnover of species composition, within and among land-use types. Overall, we show a strong impact of land use on assemblage composition. While we find that compositional turnover within land uses does not differ strongly among land uses, human land uses and secondary vegetation in an early stage of recovery are poor at retaining the species that characterise primary vegetation. The dissimilarity of assemblages in human-impacted habitats compared with primary vegetation was more pronounced in the tropical than temperate realm. An exploratory analysis suggests that this geographic difference might be caused primarily by differences in climate seasonality and in the numbers of species sampled. Taken together the results suggest that, while small-scale beta diversity within land uses is not strongly impacted by land-use type, compositional turnover between land uses is substantial. Therefore, land-use change will lead to profound changes in the structure of ecological assemblages.

Journal article

De Palma A, Kuhlmann M, Roberts SPM, Potts SG, Borger L, Hudson LN, Lysenko I, Newbold T, Purvis Aet al., 2015, Ecological traits affect the sensitivity of bees to land-use pressures in European agricultural landscapes, Journal of Applied Ecology, Vol: 52, Pages: 1567-1577, ISSN: 1365-2664

SummaryBees are a functionally important and economically valuable group, but are threatened by land-use conversion and intensification. Such pressures are not expected to affect all species identically; rather, they are likely to be mediated by the species' ecological traits.Understanding which types of species are most vulnerable under which land uses is an important step towards effective conservation planning.We collated occurrence and abundance data for 257 bee species at 1584 European sites from surveys reported in 30 published papers (70 056 records) and combined them with species-level ecological trait data. We used mixed-effects models to assess the importance of land use (land-use class, agricultural use-intensity and a remotely-sensed measure of vegetation), traits and trait × land-use interactions, in explaining species occurrence and abundance.Species' sensitivity to land use was most strongly influenced by flight season duration and foraging range, but also by niche breadth, reproductive strategy and phenology, with effects that differed among cropland, pastoral and urban habitats.Synthesis and applications. Rather than targeting particular species or settings, conservation actions may be more effective if focused on mitigating situations where species' traits strongly and negatively interact with land-use pressures. We find evidence that low-intensity agriculture can maintain relatively diverse bee communities; in more intensive settings, added floral resources may be beneficial, but will require careful placement with respect to foraging ranges of smaller bee species. Protection of semi-natural habitats is essential, however; in particular, conversion to urban environments could have severe effects on bee diversity and pollination services. Our results highlight the importance of exploring how ecological traits mediate species responses to human impacts, but further research is needed to enhance the predictive ability of such analyses.

Journal article

Pearse WD, Chase MW, Crawley MJ, Dolphin K, Fay MF, Joseph JA, Powney G, Preston CD, Rapacciuolo G, Roy DB, Purvis Aet al., 2015, Beyond the EDGE with EDAM: Prioritising British Plant Species According to Evolutionary Distinctiveness, and Accuracy and Magnitude of Decline, PLOS ONE, Vol: 10, ISSN: 1932-6203

Journal article

Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA, Boerger L, Bennett DJ, Choimes A, Collen B, Day J, De Palma A, Diaz S, Echeverria-Londono S, Edgar MJ, Feldman A, Garon M, Harrison MLK, Alhusseini T, Ingram DJ, Itescu Y, Kattge J, Kemp V, Kirkpatrick L, Kleyer M, Correia DLP, Martin CD, Meiri S, Novosolov M, Pan Y, Phillips HRP, Purves DW, Robinson A, Simpson J, Tuck SL, Weiher E, White HJ, Ewers RM, Mace GM, Scharlemann JPW, Purvis Aet al., 2015, Global effects of land use on local terrestrial biodiversity, Nature, Vol: 520, Pages: 45-50, ISSN: 0028-0836

Human activities, especially conversion and degradation of habitats, are causing global biodiversity declines. How local ecological assemblages are responding is less clear—a concern given their importance for many ecosystem functions and services. We analysed a terrestrial assemblage database of unprecedented geographic and taxonomic coverage to quantify local biodiversity responses to land use and related changes. Here we show that in the worst-affected habitats, these pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%. We estimate that, globally, these pressures have already slightly reduced average within-sample richness (by 13.6%), total abundance (10.7%) and rarefaction-based richness (8.1%), with changes showing marked spatial variation. Rapid further losses are predicted under a business-as-usual land-use scenario; within-sample richness is projected to fall by a further 3.4% globally by 2100, with losses concentrated in biodiverse but economically poor countries. Strong mitigation can deliver much more positive biodiversity changes (up to a 1.9% average increase) that are less strongly related to countries' socioeconomic status.

Journal article

Hudson LN, Newbold T, Contu S, Hill SLL, Lysenko I, De Palma A, Phillips HRP, Senior RA, Bennett DJ, Booth H, Choimes A, Correia DLP, Day J, Echeverria-Londono S, Garon M, Harrison MLK, Ingram DJ, Jung M, Kemp V, Kirkpatrick L, Martin CD, Pan Y, White HJ, Aben J, Abrahamczyk S, Adum GB, Aguilar-Barquero V, Aizen MA, Ancrenaz M, Arbelaez-Cortes E, Armbrecht I, Azhar B, Azpiroz AB, Baeten L, Baldi A, Banks JE, Barlow J, Batary P, Bates AJ, Bayne EM, Beja P, Berg A, Berry NJ, Bicknell JE, Bihn JH, Boehning-Gaese K, Boekhout T, Boutin C, Bouyer J, Brearley FQ, Brito I, Brunet J, Buczkowski G, Buscardo E, Cabra-Garcia J, Calvino-Cancela M, Cameron SA, Cancello EM, Carrijo TF, Carvalho AL, Castro H, Castro-Luna AA, Cerda R, Cerezo A, Chauvat M, Clarke FM, Cleary DFR, Connop SP, D'Aniello B, da Silva PG, Darvill B, Dauber J, Dejean A, Diekoetter T, Dominguez-Haydar Y, Dormann CF, Dumont B, Dures SG, Dynesius M, Edenius L, Elek Z, Entling MH, Farwig N, Fayle TM, Felicioli A, Felton AM, Ficetola GF, Filgueiras BKC, Fonte SJ, Fraser LH, Fukuda D, Furlani D, Ganzhorn JU, Garden JG, Gheler-Costa C, Giordani P, Giordano S, Gottschalk MS, Goulson D, Gove AD, Grogan J, Hanley ME, Hanson T, Hashim NR, Hawes JE, Hebert C, Helden AJ, Henden J-A, Hernandez L, Herzog F, Higuera-Diaz D, Hilje B, Horgan FG, Horvath R, Hylander K, Isaacs-Cubides P, Ishitani M, Jacobs CT, Jaramillo VJ, Jauker B, Jonsell M, Jung TS, Kapoor V, Kati V, Katovai E, Kessler M, Knop E, Kolb A, Koroesi A, Lachat T, Lantschner V, Le Feon V, LeBuhn G, Legare J-P, Letcher SG, Littlewood NA, Lopez-Quintero CA, Louhaichi M, Loevei GL, Lucas-Borja ME, Luja VH, Maeto K, Magura T, Mallari NA, Marin-Spiotta E, Marshall EJP, Martinez E, Mayfield MM, Mikusinski G, Milder JC, Miller JR, Morales CL, Muchane MN, Muchane M, Naidoo R, Nakamura A, Naoe S, Nates-Parra G, Navarrete Gutierrez DA, Neuschulz EL, Noreika N, Norfolk O, Noriega JA, Noeske NM, O'Dea N, Oduro W, Ofori-Boateng C, Oke CO, Osgathorpe LM, Paritsis J, Parra-H Aet al., 2014, The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts, ECOLOGY AND EVOLUTION, Vol: 4, Pages: 4701-4735, ISSN: 2045-7758

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00156933&limit=30&person=true