Imperial College London

Professor Bill Rutherford FRS

Faculty of Natural SciencesDepartment of Life Sciences

Chair in Biochemistry of Solar Energy
 
 
 
//

Contact

 

+44 (0)20 7594 5329a.rutherford Website

 
 
//

Location

 

702Sir Ernst Chain BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

250 results found

Takegawa Y, Nakamura M, Nakamura S, Noguchi T, Sellés J, Rutherford AW, Boussac A, Sugiura Met al., 2019, New insights on ChlD1 function in Photosystem II from site-directed mutants of D1/T179 in Thermosynechococcus elongatus., Biochim Biophys Acta Bioenerg, Vol: 1860, Pages: 297-309

The monomeric chlorophyll, ChlD1, which is located between the PD1PD2 chlorophyll pair and the pheophytin, PheoD1, is the longest wavelength chlorophyll in the heart of Photosystem II and is thought to be the primary electron donor. Its central Mg2+ is liganded to a water molecule that is H-bonded to D1/T179. Here, two site-directed mutants, D1/T179H and D1/T179V, were made in the thermophilic cyanobacterium, Thermosynechococcus elongatus, and characterized by a range of biophysical techniques. The Mn4CaO5 cluster in the water-splitting site is fully active in both mutants. Changes in thermoluminescence indicate that i) radiative recombination occurs via the repopulation of *ChlD1 itself; ii) non-radiative charge recombination reactions appeared to be faster in the T179H-PSII; and iii) the properties of PD1PD2 were unaffected by this mutation, and consequently iv) the immediate precursor state of the radiative excited state is the ChlD1+PheoD1- radical pair. Chlorophyll bleaching due to high intensity illumination correlated with the amount of 1O2 generated. Comparison of the bleaching spectra with the electrochromic shifts attributed to ChlD1 upon QA- formation, indicates that in the T179H-PSII and in the WT*3-PSII, the ChlD1 itself is the chlorophyll that is first damaged by 1O2, whereas in the T179V-PSII a more red chlorophyll is damaged, the identity of which is discussed. Thus, ChlD1 appears to be one of the primary damage site in recombination-mediated photoinhibition. Finally, changes in the absorption of ChlD1 very likely contribute to the well-known electrochromic shifts observed at ~430 nm during the S-state cycle.

JOURNAL ARTICLE

Zamzam N, Kaucikas M, Nurnberg DJ, Rutherford AW, van Thor JJet al., 2019, Femtosecond infrared spectroscopy of chlorophyll f-containing photosystem I, PHYSICAL CHEMISTRY CHEMICAL PHYSICS, Vol: 21, Pages: 1224-1234, ISSN: 1463-9076

JOURNAL ARTICLE

Cardona T, Rutherford W, 2018, Evolution of photochemical reaction centres: more twists?

The earliest event recorded in the molecular evolution of photosynthesis is the structural and functional specialisation of Type I (ferredoxin-reducing) and Type II (quinone-reducing) reaction centres. Here we point out that the homodimeric Type I reaction centre of Heliobacteria has a Ca2+-binding site with a number of striking parallels to the Mn4CaO5 cluster of cyanobacterial Photosystem II. This structural parallels indicate that water oxidation chemistry originated at the divergence of Type I and Type II reaction centres. We suggests that this divergence was triggered by a structural rearrangement of a core transmembrane helix resulting in a shift of the redox potential of the electron donor side and electron acceptor side at the same time and in the same redox direction.

JOURNAL ARTICLE

Cardona T, Sánchez-Baracaldo P, Rutherford AW, Larkum AWet al., 2018, Early Archean origin of Photosystem II., Geobiology

Photosystem II is a photochemical reaction center that catalyzes the light-driven oxidation of water to molecular oxygen. Water oxidation is the distinctive photochemical reaction that permitted the evolution of oxygenic photosynthesis and the eventual rise of eukaryotes. At what point during the history of life an ancestral photosystem evolved the capacity to oxidize water still remains unknown. Here, we study the evolution of the core reaction center proteins of Photosystem II using sequence and structural comparisons in combination with Bayesian relaxed molecular clocks. Our results indicate that a homodimeric photosystem with sufficient oxidizing power to split water had already appeared in the early Archean about a billion years before the most recent common ancestor of all described Cyanobacteria capable of oxygenic photosynthesis, and well before the diversification of some of the known groups of anoxygenic photosynthetic bacteria. Based on a structural and functional rationale, we hypothesize that this early Archean photosystem was capable of water oxidation to oxygen and had already evolved protection mechanisms against the formation of reactive oxygen species. This would place primordial forms of oxygenic photosynthesis at a very early stage in the evolutionary history of life.

JOURNAL ARTICLE

Kornienko N, Zhang JZ, Sokol K, Lamaison S, Fantuzzi A, van Grondelle R, Rutherford AW, Reisner Eet al., 2018, Oxygenic photoreactivity in photosystem II studied by rotating ring disk electrochemistry, Journal of the American Chemical Society, ISSN: 1520-5126

Protein film photoelectrochemistry has previously been used to monitor the activity of Photosystem II, the water-plastoquinone photooxidoreductase, but the mechanistic information attainable from a three-electrode setup has remained limited. Here we introduce the four-electrode rotating ring disk electrode technique for quantifying light-driven reaction kinetics and mechanistic pathways in real time at the enzyme-electrode interface. This setup allows us to study photochemical H2O oxidation in Photosystem II and to gain in-depth understanding of pathways that generate reactive oxygen species. The results show that Photosystem II reacts with O2 through two main pathways that both involve a superoxide intermediate to produce H2O2. The first pathway involves the established chlorophyll triplet-mediated formation of singlet oxygen, which is followed by its reduction to superoxide at the electrode surface. The second pathway is specific for the enzyme/electrode interface: an exposed antenna chlorophyll is sufficiently close to the electrode for rapid injection of an electron to form a highly reducing chlorophyll anion, which reacts with O2 in solution to produce O2•-. Incomplete H2O oxidation does not significantly contribute to reactive oxygen formation in our conditions. The rotating ring disk electrode technique allows the chemical reactivity of Photosystem II to be studied electrochemically and opens several avenues for future investigation.

JOURNAL ARTICLE

Messant M, Timm S, Fantuzzi A, Weckwerth W, Bauwe H, Rutherford AW, Krieger-Liszkay Aet al., 2018, Glycolate Induces Redox Tuning Of Photosystem II in Vivo: Study of a Photorespiration Mutant, PLANT PHYSIOLOGY, Vol: 177, Pages: 1277-1285, ISSN: 0032-0889

JOURNAL ARTICLE

Nuernberg DJ, Morton J, Santabarbara S, Telfer A, Joliot P, Antonaru LA, Ruban AV, Cardona T, Krausz E, Boussac A, Fantuzzi A, Rutherford AWet al., 2018, Photochemistry beyond the red limit in chlorophyll f-containing photosystems, SCIENCE, Vol: 360, Pages: 1210-1213, ISSN: 0036-8075

JOURNAL ARTICLE

Boussac A, Ugur I, Marion A, Sugiura M, Kaila VRI, Rutherford AWet al., 2018, The low spin - high spin equilibrium in the S-2-state of the water oxidizing enzyme, BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, Vol: 1859, Pages: 342-356, ISSN: 0005-2728

JOURNAL ARTICLE

Zhang JZ, Bombelli P, Sokol KP, Fantuzzi A, Rutherford AW, Howe CJ, Reisner Eet al., 2018, Photoelectrochemistry of Photosystem II &ITin Vitro&IT vs&IT in Vivo&IT, Journal of the American Chemical Society, Vol: 140, Pages: 6-9, ISSN: 1520-5126

Factors governing the photoelectrochemical output of photosynthetic microorganisms are poorly understood, and energy loss may occur due to inefficient electron transfer (ET) processes. Here, we systematically compare the photoelectrochemistry of photosystem II (PSII) protein-films to cyanobacteria biofilms to derive: (i) the losses in light-to-charge conversion efficiencies, (ii) gains in photocatalytic longevity, and (iii) insights into the ET mechanism at the biofilm interface. This study was enabled by the use of hierarchically structured electrodes, which could be tailored for high/stable loadings of PSII core complexes and Synechocystis sp. PCC 6803 cells. The mediated photocurrent densities generated by the biofilm were 2 orders of magnitude lower than those of the protein-film. This was partly attributed to a lower photocatalyst loading as the rate of mediated electron extraction from PSII in vitro is only double that of PSII in vivo. On the other hand, the biofilm exhibited much greater longevity (>5 days) than the protein-film (<6 h), with turnover numbers surpassing those of the protein-film after 2 days. The mechanism of biofilm electrogenesis is suggested to involve an intracellular redox mediator, which is released during light irradiation.

JOURNAL ARTICLE

Lohmiller T, Krewald V, Sedoud A, Rutherford AW, Neese F, Lubitz W, Pantazis DA, Cox Net al., 2017, The First State in the Catalytic Cycle of the Water-Oxidizing Enzyme: Identification of a Water-Derived mu-Hydroxo Bridge, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, Vol: 139, Pages: 14412-14424, ISSN: 0002-7863

JOURNAL ARTICLE

Davis GA, Rutherford AW, Kramer DM, 2017, Hacking the thylakoid proton motive force for improved photosynthesis: modulating ion flux rates that control proton motive force partitioning into Delta psi and Delta pH, PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, Vol: 372, ISSN: 0962-8436

JOURNAL ARTICLE

Kornienko N, van Grondelle R, Rutherford AW, Reisner Eet al., 2017, Quantitatively probing photosystem II with a rotating ring disk electrode assembly, 254th National Meeting and Exposition of the American-Chemical-Society (ACS) on Chemistry's Impact on the Global Economy, Publisher: AMER CHEMICAL SOC, ISSN: 0065-7727

CONFERENCE PAPER

Kaucikas M, Nurnberg D, Dorlhiac G, Rutherford AW, van Thor JJet al., 2017, Femtosecond Visible Transient Absorption Spectroscopy of Chlorophyll f-Containing Photosystem I, BIOPHYSICAL JOURNAL, Vol: 112, Pages: 234-249, ISSN: 0006-3495

JOURNAL ARTICLE

Brinkert K, De Causmaecker S, Krieger-Liszkay A, Fantuzzi A, Rutherford AWet al., 2016, Bicarbonate-induced redox tuning in Photosystem II for regulation and protection, PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, Vol: 113, Pages: 12144-12149, ISSN: 0027-8424

JOURNAL ARTICLE

Davis GA, Kanazawa A, Schoettler MA, Kohzuma K, Froehlich JE, Rutherford AW, Satoh-Cruz M, Minhas D, Tietz S, Dhingra A, Kramer DMet al., 2016, Limitations to photosynthesis by proton motive force-induced photosystem II photodamage, ELIFE, Vol: 5, ISSN: 2050-084X

JOURNAL ARTICLE

Brinkert K, Le Formal F, Li X, Durrant J, Rutherford AW, Fantuzzi Aet al., 2016, Photocurrents from photosystem II in a metal oxide hybrid system: Electron transfer pathways, BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, Vol: 1857, Pages: 1497-1505, ISSN: 0005-2728

JOURNAL ARTICLE

Ugur I, Rutherford AW, Kaila VRI, 2016, Redox-coupled substrate water reorganization in the active site of Photosystem II-The role of calcium in substrate water delivery, BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, Vol: 1857, Pages: 740-748, ISSN: 0005-2728

JOURNAL ARTICLE

MacKellar D, Lieber L, Norman JS, Bolger A, Tobin C, Murray JW, Oksaksin M, Chang RL, Ford TJ, Nguyen PQ, Woodward J, Permingeat HR, Joshi NS, Silver PA, Usadel B, Rutherford AW, Friesen ML, Prell Jet al., 2016, Streptomyces thermoautotrophicus does not fix nitrogen, SCIENTIFIC REPORTS, Vol: 6, ISSN: 2045-2322

JOURNAL ARTICLE

Saito K, Rutherford AW, Ishikita H, 2015, Energetics of proton release on the first oxidation step in the water-oxidizing enzyme, NATURE COMMUNICATIONS, Vol: 6, ISSN: 2041-1723

JOURNAL ARTICLE

Mersch D, Lee C-Y, Zhang JZ, Brinkert K, Fontecilla-Camps JC, Rutherford AW, Reisner Eet al., 2015, Wiring of Photosystem II to Hydrogenase for Photoelectrochemical Water Splitting, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, Vol: 137, Pages: 8541-8549, ISSN: 0002-7863

JOURNAL ARTICLE

Boussac A, Rutherford AW, Sugiura M, 2015, Electron transfer pathways from the S-2-states to the S-3-states either after a Ca2+/Sr2+ or a Cl-/I- exchange in Photosystem II from, BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, Vol: 1847, Pages: 576-586, ISSN: 0005-2728

JOURNAL ARTICLE

Cardona T, Murray JW, Rutherford AW, 2015, Origin and Evolution of Water Oxidation before the Last Common Ancestor of the Cyanobacteria, MOLECULAR BIOLOGY AND EVOLUTION, Vol: 32, Pages: 1310-1328, ISSN: 0737-4038

JOURNAL ARTICLE

Cotton CAR, Douglass JS, De Causmaecker S, Brinkert K, Cardona T, Fantuzzi A, Rutherford AW, Murray JWet al., 2015, Photosynthetic constraints on fuel from microbes., Front Bioeng Biotechnol, Vol: 3, ISSN: 2296-4185

JOURNAL ARTICLE

Rutherford AW, 2014, Redox tuning in biological electron transfer: sacrificing efficiency to survive life in O-2, 12th European Biological Inorganic Chemistry Conference (EuroBIC), Publisher: SPRINGER, Pages: S704-S704, ISSN: 0949-8257

CONFERENCE PAPER

Sugiura M, Azami C, Koyama K, Rutherford AW, Rappaport F, Boussac Aet al., 2014, Modification of the pheophytin redox potential in Therrnosynechococcus elongatus Photosystem II with PsbA3 as D1, BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, Vol: 1837, Pages: 139-148, ISSN: 0005-2728

JOURNAL ARTICLE

Kato M, Cardona T, Rutherford AW, Reisner Eet al., 2013, Covalent Immobilization of Oriented Photosystem II on a Nanostructured Electrode for Solar Water Oxidation, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, Vol: 135, Pages: 10610-10613, ISSN: 0002-7863

JOURNAL ARTICLE

Saito K, Rutherford AW, Ishikita H, 2013, Mechanism of tyrosine D oxidation in Photosystem II, PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, Vol: 110, Pages: 7690-7695, ISSN: 0027-8424

JOURNAL ARTICLE

Faunce T, Styring S, Wasielewski MR, Brudvig GW, Rutherford AW, Messinger J, Lee AF, Hill CL, deGroot H, Fontecave M, MacFarlane DR, Hankamer B, Nocera DG, Tiede DM, Dau H, Hillier W, Wang L, Amal Ret al., 2013, Artificial photosynthesis as a frontier technology for energy sustainability, ENERGY & ENVIRONMENTAL SCIENCE, Vol: 6, Pages: 1074-1076, ISSN: 1754-5692

JOURNAL ARTICLE

Faunce TA, Lubitz W, Rutherford AWB, MacFarlane DR, Moore GF, Yang P, Nocera DG, Moore TA, Gregory DH, Fukuzumi S, Yoon KB, Armstrong FA, Wasielewski MR, Styring Set al., 2013, Energy and environment policy case for a global project on artificial photosynthesis, ENERGY & ENVIRONMENTAL SCIENCE, Vol: 6, Pages: 695-698, ISSN: 1754-5692

JOURNAL ARTICLE

Zhao Z, Rutherford AW, Moser CC, Dutton PLet al., 2013, Photosynthetic Reaction Center Performance under Physiologically Relevant Energetic Changes, 57th Annual Meeting of the Biophysical-Society, Publisher: CELL PRESS, Pages: 489A-489A, ISSN: 0006-3495

CONFERENCE PAPER

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00646155&limit=30&person=true