Imperial College London

Dr Adam Jan Sadowski

Faculty of EngineeringDepartment of Civil and Environmental Engineering

Senior Lecturer
 
 
 
//

Contact

 

+44 (0)20 7594 3065a.sadowski Website

 
 
//

Location

 

318Skempton BuildingSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Wang:2018:10.1016/j.ijmecsci.2018.02.027,
author = {Wang, J and Sadowski, AJ},
doi = {10.1016/j.ijmecsci.2018.02.027},
journal = {International Journal of Mechanical Sciences},
pages = {200--210},
title = {Elastic imperfect tip-loaded cantilever cylinders of varying length},
url = {http://dx.doi.org/10.1016/j.ijmecsci.2018.02.027},
volume = {140},
year = {2018}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - A number of recent publications have explored the crucial relationship between the length of a thin cylindrical shell and the influence of pre-buckling cross-sectional ovalisation on its nonlinear elastic buckling capacity under bending. However, the research thus far appears to have focused almost exclusively on uniform bending, with ovalisation under moment gradients largely neglected.This paper presents a comprehensive computational investigation into the nonlinear elastic buckling response of perfect and imperfect thin cantilever cylinders under global transverse shear. A complete range of practical lengths was investigated, from short cylinders which fail by shear buckling to very long ones which exhibit local meridional compression buckling with significant prior cross-section ovalisation. Two imperfection forms were applied depending on the length of the cylinder: the linear buckling eigenmode for short cylinders and a realistic weld depression imperfection for long cylinders. The weld depression imperfection was placed at the location where the cross-section of the perfect cylinder was found to undergo peak ovalisation under transverse shear, a location that approaches the base support with increasing length. Compact closed-form algebraic expressions are proposed to characterise the elastic buckling and ovalisation behaviour conservatively, suitable for direct application as design equations.This study contributes to complete the understanding of cylindrical structures of varying length where the dominant load case is global transverse shear, including multi-strake aerospace shells with short individual segments between stiffeners and long near-cylindrical wind-turbine support towers and chimneys under wind or seismic action.
AU - Wang,J
AU - Sadowski,AJ
DO - 10.1016/j.ijmecsci.2018.02.027
EP - 210
PY - 2018///
SN - 0020-7403
SP - 200
TI - Elastic imperfect tip-loaded cantilever cylinders of varying length
T2 - International Journal of Mechanical Sciences
UR - http://dx.doi.org/10.1016/j.ijmecsci.2018.02.027
UR - http://hdl.handle.net/10044/1/57045
VL - 140
ER -