Imperial College London

DrApostolosVoulgarakis

Faculty of Natural SciencesDepartment of Physics

Senior Lecturer
 
 
 
//

Contact

 

+44 (0)20 7594 1968a.voulgarakis Website

 
 
//

Location

 

725Huxley BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

52 results found

Liu L, Shawki D, Voulgarakis A, Kasoar M, Samset BH, Myhre G, Forster PM, Hodnebrog O, Sillmann J, Aalbergsjo SG, Boucher O, Faluvegi G, Iversen T, Kirkevag A, Lamarque J-F, Olivie D, Richardson T, Shindell D, Takemura Tet al., 2018, A PDRMIP Multimodel Study on the Impacts of Regional Aerosol Forcings on Global and Regional Precipitation, JOURNAL OF CLIMATE, Vol: 31, Pages: 4429-4447, ISSN: 0894-8755

JOURNAL ARTICLE

Myhre G, Samset BH, Hodnebrog O, Andrews T, Boucher O, Faluvegi G, Flaschner D, Forster PM, Kasoar M, Kharin V, Kirkevag A, Lamarque J-F, Olivie D, Richardson TB, Shawki D, Shindell D, Shine KP, Stjern CW, Takemura T, Voulgarakis Aet al., 2018, Sensible heat has significantly affected the global hydrological cycle over the historical period, NATURE COMMUNICATIONS, Vol: 9, ISSN: 2041-1723

JOURNAL ARTICLE

Richardson TB, Forster PM, Andrews T, Boucher O, Faluvegi G, Fläschner D, Kasoar M, Kirkevåg A, Lamarque JF, Myhre G, Olivié D, Samset BH, Shawki D, Shindell D, Takemura T, Voulgarakis Aet al., 2018, Carbon Dioxide Physiological Forcing Dominates Projected Eastern Amazonian Drying, Geophysical Research Letters, Vol: 45, Pages: 2815-2825, ISSN: 0094-8276

Future projections of east Amazonian precipitation indicate drying, but they are uncertain and poorly understood. In this study we analyze the Amazonian precipitation response to individual atmospheric forcings using a number of global climate models. Black carbon is found to drive reduced precipitation over the Amazon due to temperature-driven circulation changes, but the magnitude is uncertain. CO 2 drives reductions in precipitation concentrated in the east, mainly due to a robustly negative, but highly variable in magnitude, fast response. We find that the physiological effect of CO 2 on plant stomata is the dominant driver of the fast response due to reduced latent heating and also contributes to the large model spread. Using a simple model, we show that CO 2 physiological effects dominate future multimodel mean precipitation projections over the Amazon. However, in individual models temperature-driven changes can be large, but due to little agreement, they largely cancel out in the model mean.

JOURNAL ARTICLE

Badia A, Jorba O, Voulgarakis A, Dabdub D, Perez Garcia-Pando C, Hilboll A, Goncalves M, Janjic Zet al., 2017, Description and evaluation of the Multiscale Online Nonhydrostatic AtmospheRe CHemistry model (NMMB-MONARCH) version 1.0: gas-phase chemistry at global scale, GEOSCIENTIFIC MODEL DEVELOPMENT, Vol: 10, Pages: 609-638, ISSN: 1991-959X

JOURNAL ARTICLE

Myhre G, Forster PM, Samset BH, Hodnebrog O, Sillmann J, Aalbergsjo SG, Andrews T, Boucher O, Faluvegi G, Flaeschner D, Iversen T, Kasoar M, Kharin V, Kirkevag A, Lamarque J-F, Olivie D, Richardson TB, Shindell D, Shine KP, Stjern CW, Takemura T, Voulgarakis A, Zwiers Fet al., 2017, PDRMIP A Precipitation Driver and Response Model Intercomparison Project-Protocol and Preliminary Results, BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, Vol: 98, Pages: 1185-1198, ISSN: 0003-0007

JOURNAL ARTICLE

Rabin SS, Melton JR, Lasslop G, Bachelet D, Forrest M, Hantson S, Kaplan JO, Li F, Mangeon S, Ward DS, Yue C, Arora VK, Hickler T, Kloster S, Knorr W, Nieradzik L, Spessa A, Folberth GA, Sheehan T, Voulgarakis A, Kelley DI, Prentice IC, Sitch S, Harrison S, Arneth Aet al., 2017, The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions, GEOSCIENTIFIC MODEL DEVELOPMENT, Vol: 10, Pages: 1175-1197, ISSN: 1991-959X

JOURNAL ARTICLE

Saunois M, Bousquet P, Poulter B, Peregon A, Ciais P, Canadell JG, Dlugokencky EJ, Etiope G, Bastviken D, Houweling S, Janssens-Maenhout G, Tubiello FN, Castaldi S, Jackson RB, Alexe M, Arora VK, Beerling DJ, Bergamaschi P, Blake DR, Brailsford G, Bruhwiler L, Crevoisier C, Crill P, Covey K, Frankenberg C, Gedney N, Hoeglund-Isaksson L, Ishizawa M, Ito A, Joos F, Kim H-S, Kleinen T, Krummel P, Lamarque J-F, Langenfelds R, Locatelli R, Machida T, Maksyutov S, Melton JR, Morino I, Naik V, O'Doherty S, Parmentier F-J, Patra PK, Peng C, Peng S, Peters GP, Pison I, Prinn R, Ramonet M, Riley WJ, Saito M, Santini M, Schroeder R, Simpson IJ, Spahni R, Takizawa A, Thornton BF, Tian H, Tohjima Y, Viovy N, Voulgarakis A, Weiss R, Wilton DJ, Wiltshire A, Worthy D, Wunch D, Xu X, Yoshida Y, Zhang B, Zhang Z, Zhu Qet al., 2017, Variability and quasi-decadal changes in the methane budget over the period 2000-2012, Atmospheric Chemistry and Physics, Vol: 17, Pages: 11135-11161, ISSN: 1680-7316

Following the recent Global Carbon Project (GCP) synthesis of the decadal methane (CH4) budget over 2000–2012 (Saunois et al., 2016), we analyse here the same dataset with a focus on quasi-decadal and inter-annual variability in CH4 emissions. The GCP dataset integrates results from top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models (including process-based models for estimating land surface emissions and atmospheric chemistry), inventories of anthropogenic emissions, and data-driven approaches. The annual global methane emissions from top-down studies, which by construction match the observed methane growth rate within their uncertainties, all show an increase in total methane emissions over the period 2000–2012, but this increase is not linear over the 13 years. Despite differences between individual studies, the mean emission anomaly of the top-down ensemble shows no significant trend in total methane emissions over the period 2000–2006, during the plateau of atmospheric methane mole fractions, and also over the period 2008–2012, during the renewed atmospheric methane increase. However, the top-down ensemble mean produces an emission shift between 2006 and 2008, leading to 22 [16–32] Tg CH4 yr−1 higher methane emissions over the period 2008–2012 compared to 2002–2006. This emission increase mostly originated from the tropics, with a smaller contribution from mid-latitudes and no significant change from boreal regions. The regional contributions remain uncertain in top-down studies. Tropical South America and South and East Asia seem to contribute the most to the emission increase in the tropics. However, these two regions have only limited atmospheric measurements and remain therefore poorly constrained. The sectorial partitioning of this emission increase between the periods 2002–2006 and 2008–2012 differs from one atmospheric in

JOURNAL ARTICLE

Shawki D, Field RD, Tippett MK, Saharjo BH, Albar I, Atmoko D, Voulgarakis Aet al., 2017, Long-Lead Prediction of the 2015 Fire and Haze Episode in Indonesia, Geophysical Research Letters, Vol: 44, Pages: 9996-10005, ISSN: 0094-8276

We conducted a case study of National Centers for Environmental Prediction Climate Forecast System version 2 seasonal model forecast performance over Indonesia in predicting the dry conditions in 2015 that led to severe fire, in comparison to the non-El Niño dry season conditions of 2016. Forecasts of the Drought Code (DC) component of Indonesia's Fire Danger Rating System were examined across the entire equatorial Asia region and for the primary burning regions within it. Our results show that early warning lead times of high observed DC in September and October 2015 varied considerably for different regions. High DC over Southern Kalimantan and Southern New Guinea were predicted with 180 day lead times, whereas Southern Sumatra had lead times of up to only 60 days, which we attribute to the absence in the forecasts of an eastward decrease in Indian Ocean sea surface temperatures. This case study provides the starting point for longer-term evaluation of seasonal fire danger rating forecasts over Indonesia.

JOURNAL ARTICLE

Stjern CW, Samset BH, Myhre G, Forster PM, Hodnebrog Ø, Andrews T, Boucher O, Faluvegi G, Iversen T, Kasoar M, Kharin V, Kirkevåg A, Lamarque J-F, Olivié D, Richardson T, Shawki D, Shindell D, Smith CJ, Takemura T, Voulgarakis Aet al., 2017, Rapid Adjustments Cause Weak Surface Temperature Response to Increased Black Carbon Concentrations, Journal of Geophysical Research: Atmospheres, Vol: 122, Pages: 462-481, ISSN: 2169-897X

We investigate the climate response to increased concentrations of black carbon (BC), as part of the Precipitation Driver Response Model Intercomparison Project (PDRMIP). A tenfold increase in BC is simulated by nine global coupled-climate models, producing a model median effective radiative forcing of 0.82 (ranging from 0.41 to 2.91) W m−2, and a warming of 0.67 (0.16 to 1.66) K globally and 1.24 (0.26 to 4.31) K in the Arctic. A strong positive instantaneous radiative forcing (median of 2.10 W m−2 based on five of the models) is countered by negative rapid adjustments (−0.64 W m−2 for the same five models), which dampen the total surface temperature signal. Unlike other drivers of climate change, the response of temperature and cloud profiles to the BC forcing is dominated by rapid adjustments. Low-level cloud amounts increase for all models, while higher-level clouds are diminished. The rapid temperature response is particularly strong above 400 hPa, where increased atmospheric stabilization and reduced cloud cover contrast the response pattern of the other drivers. In conclusion, we find that this substantial increase in BC concentrations does have considerable impacts on important aspects of the climate system. However, some of these effects tend to offset one another, leaving a relatively small median global warming of 0.47 K per W m−2—about 20% lower than the response to a doubling of CO2. Translating the tenfold increase in BC to the present-day impact of anthropogenic BC (given the emissions used in this work) would leave a warming of merely 0.07 K.

JOURNAL ARTICLE

Voulgarakis A, Field R, Fromm M, 2017, Fire Impacts on High-Altitude Atmospheric Com-Position, 13th International Conference on Meteorology, Climatology and Atmospheric Physics (COMECAP), Publisher: SPRINGER, Pages: 1231-1237, ISSN: 2194-5217

CONFERENCE PAPER

Wu Y, Han Y, Voulgarakis A, Wang T, Li M, Wang Y, Xie M, Zhuang B, Li Set al., 2017, An agricultural biomass burning episode in eastern China: Transport, optical properties, and impacts on regional air quality, JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, Vol: 122, Pages: 2304-2324, ISSN: 2169-897X

JOURNAL ARTICLE

Field RD, Luo M, Fromm M, Voulgarakis A, Mangeon S, Worden Jet al., 2016, Simulating the Black Saturday 2009 smoke plume with an interactive composition-climate model: Sensitivity to emissions amount, timing, and injection height, JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, Vol: 121, Pages: 4296-4316, ISSN: 2169-897X

JOURNAL ARTICLE

Hantson S, Arneth A, Harrison SP, Kelley DI, Prentice IC, Rabin SS, Archibald S, Mouillot F, Arnold SR, Artaxo P, Bachelet D, Ciais P, Forrest M, Friedlingstein P, Hickler T, Kaplan JO, Kloster S, Knorr W, Lasslop G, Li F, Mangeon S, Melton JR, Meyn A, Sitch S, Spessa A, Van Der Werf GR, Voulgarakis A, Yue Cet al., 2016, The status and challenge of global fire modelling, Biogeosciences Discussions, Vol: 2016, ISSN: 1810-6277

© Author(s) 2016. Biomass burning impacts vegetation dynamics, biogeochemical cycling, atmospheric chemistry, and climate, with sometimes deleterious socio-economic impacts. Under future climate projections it is often expected that the risk of wildfires will increase. Our ability to predict the magnitude and geographic pattern of future fire impacts rests on our ability to model fire regimes, either using well-founded empirical relationships or process-based models with good predictive skill. A large variety of models exist today and it is still unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. This is the central question underpinning the creation of the Fire Model Intercomparison Project - FireMIP, an international project to compare and evaluate existing global fire models against benchmark data sets for present-day and historical conditions. In this paper we summarise the current state-of-the-art in fire regime modelling and model evaluation, and outline what lessons may be learned from FireMIP.

JOURNAL ARTICLE

Hantson S, Arneth A, Harrison SP, Kelley DI, Prentice IC, Rabin SS, Archibald S, Mouillot F, Arnold SR, Artaxo P, Bachelet D, Ciais P, Forrest M, Friedlingstein P, Hickler T, Kaplan JO, Kloster S, Knorr W, Lasslop G, Li F, Mangeon S, Melton JR, Meyn A, Sitch S, Spessa A, van der Werf GR, Voulgarakis A, Yue Cet al., 2016, The status and challenge of global fire modelling, BIOGEOSCIENCES, Vol: 13, Pages: 3359-3375, ISSN: 1726-4170

JOURNAL ARTICLE

Kasoar M, Voulgarakis A, Lamarque J-F, Shindell DT, Bellouin N, Collins WJ, Faluvegi G, Tsigaridis Ket al., 2016, Regional and global temperature response to anthropogenic SO2 emissions from China in three climate models, ATMOSPHERIC CHEMISTRY AND PHYSICS, Vol: 16, Pages: 9785-9804, ISSN: 1680-7316

JOURNAL ARTICLE

Mangeon S, Field R, Fromm M, McHugh C, Voulgarakis Aet al., 2016, Satellite versus ground-based estimates of burned area: A comparison between MODIS based burned area and fire agency reports over North America in 2007, The Anthropocene Review, Vol: 3, Pages: 76-92, ISSN: 2053-0196

JOURNAL ARTICLE

Mangeon S, Voulgarakis A, Gilham R, Harper A, Sitch S, Folberth Get al., 2016, INFERNO: a fire and emissions scheme for the UK Met Office's Unified Model, GEOSCIENTIFIC MODEL DEVELOPMENT, Vol: 9, ISSN: 1991-959X

JOURNAL ARTICLE

Myriokefalitakis S, Daskalakis N, Fanourgakis GS, Voulgarakis A, Krol MC, de Brugh JMJA, Kanakidou Met al., 2016, Ozone and carbon monoxide budgets over the Eastern Mediterranean, SCIENCE OF THE TOTAL ENVIRONMENT, Vol: 563, Pages: 40-52, ISSN: 0048-9697

JOURNAL ARTICLE

Samset BH, Myhre G, Forster PM, Hodnebrog O, Andrews T, Faluvegi G, Flaeschner D, Kasoar M, Kharin V, Kirkevag A, Lamarque J-F, Olivie D, Richardson T, Shindell D, Shine KP, Takemura T, Voulgarakis Aet al., 2016, Fast and slow precipitation responses to individual climate forcers: A PDRMIP multimodel study, GEOPHYSICAL RESEARCH LETTERS, Vol: 43, Pages: 2782-2791, ISSN: 0094-8276

JOURNAL ARTICLE

Saunois M, Bousquet P, Poulter B, Peregon A, Ciais P, Canadell JG, Dlugokencky EJ, Etiope G, Bastviken D, Houweling S, Janssens-Maenhout G, Tubiello FN, Castaldi S, Jackson RB, Alexe M, Arora VK, Beerling DJ, Bergamaschi P, Blake DR, Brailsford G, Brovkin V, Bruhwiler L, Crevoisier C, Crill P, Covey K, Curry C, Frankenberg C, Gedney N, Hoeglund-Isaksson L, Ishizawa M, Ito A, Joos F, Kim H-S, Kleinen T, Krummel P, Lamarque J-F, Langenfelds R, Locatelli R, Machida T, Maksyutov S, McDonald KC, Marshall J, Melton JR, Morino I, Naik V, O'Doherty S, Parmentier F-JW, Patra PK, Peng C, Peng S, Peters GP, Pison I, Prigent C, Prinn R, Ramonet M, Riley WJ, Saito M, Santini M, Schroeder R, Simpson IJ, Spahni R, Steele P, Takizawa A, Thornton BF, Tian H, Tohjima Y, Viovy N, Voulgarakis A, van Weele M, van der Werf GR, Weiss R, Wiedinmyer C, Wilton DJ, Wiltshire A, Worthy D, Wunch D, Xu X, Yoshida Y, Zhang B, Zhang Z, Zhu Qet al., 2016, The global methane budget 2000-2012, EARTH SYSTEM SCIENCE DATA, Vol: 8, Pages: 697-751, ISSN: 1866-3508

JOURNAL ARTICLE

Field RD, Luo M, Kim D, Del Genio AD, Voulgarakis A, Worden Jet al., 2015, Sensitivity of simulated tropospheric CO to subgrid physics parameterization: A case study of Indonesian biomass burning emissions in 2006, JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, Vol: 120, ISSN: 2169-897X

JOURNAL ARTICLE

Nazarenko L, Schmidt GA, Miller RL, Tausnev N, Kelley M, Ruedy R, Russell GL, Aleinov I, Bauer M, Bauer S, Bleck R, Canuto V, Cheng Y, Clune TL, Del Genio AD, Faluvegi G, Hansen JE, Healy RJ, Kiang NY, Koch D, Lacis AA, LeGrande AN, Lerner J, Lo KK, Menon S, Oinas V, Perlwitz J, Puma MJ, Rind D, Romanou A, Sato M, Shindell DT, Sun S, Tsigaridis K, Unger N, Voulgarakis A, Yao M-S, Zhang Jet al., 2015, Future climate change under RCP emission scenarios with GISS ModelE2, JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, Vol: 7, Pages: 244-267, ISSN: 1942-2466

JOURNAL ARTICLE

Voulgarakis A, Field RD, 2015, Fire Influences on Atmospheric Composition, Air Quality and Climate, Current Pollution Reports, Vol: 1, Pages: 70-81

JOURNAL ARTICLE

Voulgarakis A, Marlier ME, Faluvegi G, Shindell DT, Tsigaridis K, Mangeon Set al., 2015, Interannual variability of tropospheric trace gases and aerosols: The role of biomass burning emissions, Journal of Geophysical Research: Atmospheres, Vol: 120, Pages: 7157-7173, ISSN: 2169-897X

Fires are responsible for a range of gaseous and aerosol emissions. However, their influence onthe interannual variability of atmospheric trace gases and aerosols has not been systematically investigatedfrom a global perspective. We examine biomass burning emissions as a driver of interannual variability oflarge-scale abundances of short-lived constituents such as carbon monoxide (CO), hydroxyl radicals (OH),ozone, and aerosols using the Goddard Institute for Space Studies ModelE composition-climate model and arange of observations, with an emphasis on satellite information. Our model captures the observed variabilityof the constituents examined in most cases, but with substantial underestimates in boreal regions. Thestrongest interannual variability on a global scale is found for carbon monoxide (~10% for its global annualburden), while the lowest is found for tropospheric ozone (~1% for its global annual burden). Regionally,aerosol optical depth shows the largest variability which exceeds 50%. Areas of strong variability of bothaerosols and CO include the tropical land regions (especially Equatorial Asia and South America) and northernhigh latitudes, while even regions in the northern midlatitudes experience substantial interannual variability ofaerosols. Ozone variability peaks over equatorial Asia in boreal autumn, partly due to varying biomass burningemissions, and over the western and central Pacific in the rest of the year, mainly due to meteorologicalfluctuations. We find that biomass burning emissions are almost entirely responsible for global CO interannualvariability, and similarly important for OH variability. The same is true for global and regional aerosol variability,especially when not taking into account dust and sea-salt particles. We show that important implications canarise from such interannual influences for regional climate and air quality

JOURNAL ARTICLE

Marlier ME, Voulgarakis A, Shindell DT, Faluvegi G, Henry CL, Randerson JTet al., 2014, The role of temporal evolution in modeling atmospheric emissions from tropical fires, ATMOSPHERIC ENVIRONMENT, Vol: 89, Pages: 158-168, ISSN: 1352-2310

JOURNAL ARTICLE

Miller RL, Schmidt GA, Nazarenko LS, Tausnev N, Bauer SE, DelGenio AD, Kelley M, Lo KK, Ruedy R, Shindell DT, Aleinov I, Bauer M, Bleck R, Canuto V, Chen Y, Cheng Y, Clune TL, Faluvegi G, Hansen JE, Healy RJ, Kiang NY, Koch D, Lacis AA, LeGrande AN, Lerner J, Menon S, Oinas V, Garcia-Pando CP, Perlwitz JP, Puma MJ, Rind D, Romanou A, Russell GL, Sato M, Sun S, Tsigaridis K, Unger N, Voulgarakis A, Yao M-S, Zhang Jet al., 2014, CMIP5 historical simulations (1850-2012) with GISS ModelE2, JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, Vol: 6, Pages: 441-477, ISSN: 1942-2466

JOURNAL ARTICLE

O'Connor FM, Johnson CE, Morgenstern O, Abraham NL, Braesicke P, Dalvi M, Folberth GA, Sanderson MG, Telford PJ, Voulgarakis A, Young PJ, Zeng G, Collins WJ, Pyle JAet al., 2014, Evaluation of the new UKCA climate-composition model - Part 2: The Troposphere, GEOSCIENTIFIC MODEL DEVELOPMENT, Vol: 7, Pages: 41-91, ISSN: 1991-959X

JOURNAL ARTICLE

Schmidt GA, Kelley M, Nazarenko L, Ruedy R, Russell GL, Aleinov I, Bauer M, Bauer SE, Bhat MK, Bleck R, Canuto V, Chen Y-H, Cheng Y, Clune TL, Del Genio A, de Fainchtein R, Faluvegi G, Hansen JE, Healy RJ, Kiang NY, Koch D, Lacis AA, LeGrande AN, Lerner J, Lo KK, Matthews EE, Menon S, Miller RL, Oinas V, Oloso AO, Perlwitz JP, Puma MJ, Putman WM, Rind D, Romanou A, Sato M, Shindell DT, Sun S, Syed RA, Tausnev N, Tsigaridis K, Unger N, Voulgarakis A, Yao M-S, Zhang Jet al., 2014, Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive, JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, Vol: 6, Pages: 141-184, ISSN: 1942-2466

JOURNAL ARTICLE

Bowman KW, Shindell DT, Worden HM, Lamarque JF, Young PJ, Stevenson DS, Qu Z, de la Torre M, Bergmann D, Cameron-Smith PJ, Collins WJ, Doherty R, Dalsoren SB, Faluvegi G, Folberth G, Horowitz LW, Josse BM, Lee YH, MacKenzie IA, Myhre G, Nagashima T, Naik V, Plummer DA, Rumbold ST, Skeie RB, Strode SA, Sudo K, Szopa S, Voulgarakis A, Zeng G, Kulawik SS, Aghedo AM, Worden JRet al., 2013, Evaluation of ACCMIP outgoing longwave radiation from tropospheric ozone using TES satellite observations, ATMOSPHERIC CHEMISTRY AND PHYSICS, Vol: 13, Pages: 4057-4072, ISSN: 1680-7316

JOURNAL ARTICLE

Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson EL, Houweling S, Josse B, Fraser PJ, Krummel PB, Lamarque J-F, Langenfelds RL, Le Quere C, Naik V, O'Doherty S, Palmer PI, Pison I, Plummer D, Poulter B, Prinn RG, Rigby M, Ringeval B, Santini M, Schmidt M, Shindell DT, Simpson IJ, Spahni R, Steele LP, Strode SA, Sudo K, Szopa S, van der Werf GR, Voulgarakis A, van Weele M, Weiss RF, Williams JE, Zeng Get al., 2013, Three decades of global methane sources and sinks, NATURE GEOSCIENCE, Vol: 6, Pages: 813-823, ISSN: 1752-0894

JOURNAL ARTICLE

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00582740&limit=30&person=true