Imperial College London

Adrian T LaMoury

Faculty of Natural SciencesDepartment of Physics

Research Postgraduate







6M70Huxley BuildingSouth Kensington Campus





Publication Type

5 results found

Vuorinen L, Hietala H, Plaschke F, LaMoury ATet al., 2021, Magnetic field in magnetosheath jets: a statistical study of B-Z near the magnetopause, Journal of Geophysical Research: Space Physics, Vol: 126, ISSN: 2169-9380

Magnetosheath jets travel from the bow shock toward the magnetopause, and some of them eventually impact it. Jet impacts have recently been linked to triggering magnetopause reconnection in case studies by Hietala et al. (2018, and Nykyri et al. (2019, In this study, we focus on the enhancing or suppressing effect jets could have on reconnection by locally altering the magnetic shear via their own magnetic fields. Using observations from the years 2008–2011 made by the Time History of Events and Macroscale Interactions during Substorms spacecraft and solar wind OMNI data, we statistically study for the first time urn:x-wiley:21699380:media:jgra56695:jgra56695-math-0002 within jets in the Geocentric Solar Magnetospheric coordinates. We find that urn:x-wiley:21699380:media:jgra56695:jgra56695-math-0003 opposite to the prevailing interplanetary magnetic field (IMF) urn:x-wiley:21699380:media:jgra56695:jgra56695-math-0004 is roughly as common in jets as in the non-jet magnetosheath near the magnetopause, but these observations are distributed differently. 60–70% of jet intervals contain bursts of opposite polarity urn:x-wiley:21699380:media:jgra56695:jgra56695-math-0005 in comparison to around 40urn:x-wiley:21699380:media:jgra56695:jgra56695-math-0006 of similar non-jet intervals. The median duration of such a burst in jets is 10 s and strength is urn:x-wiley:21699380:media:jgra56695:jgra56695-math-0007nT. We also investigate the prevalence of the type of strong urn:x-wiley:21699380:media:jgra56695:jgra56695-math-0008nT pulses that Nykyri et al. (2019, linked to a substorm onset. In our data set, such pulses were observed in around 13% of jets. Our statistical results indicate that jets may have the potential to affect local magnetopause reconnection via their magnetic fields. Future studies are needed to determine whether such effects can be ob

Journal article

LaMoury AT, Hietala H, Plaschke F, Vuorinen L, Eastwood JPet al., 2021, Solar wind control of magnetosheath jet formation and propagation to the magnetopause, Journal of Geophysical Research: Space Physics, Vol: 126, Pages: 1-15, ISSN: 2169-9380

Magnetosheath jets are localized high-dynamic pressure pulses originating at Earth's bow shock and propagating earthward through the magnetosheath. Jets can influence magnetospheric dynamics upon impacting the magnetopause; however, many jets dissipate before reaching it. In this study we present a database of 13,096 jets observed by the Time History of Events and Macroscale Interactions during Substorms spacecraft from 2008 to 2018, spanning a solar cycle. Each jet is associated with upstream solar wind conditions from OMNI. We statistically examine how solar wind conditions control the likelihood of jets forming at the shock, and the conditions favorable for jets to propagate through the magnetosheath and reach the magnetopause. We see that, for each solar wind quantity, these two effects are separate, but when combined, we find that jets are over 17 times more likely to reach and potentially impact the magnetopause when the interplanetary magnetic field (IMF) orientation is at a low cone angle, and approximately 8 times more likely during high speed solar wind. Low IMF magnitude, high Alfvén Mach number, and low density approximately double the number of jets at the magnetopause, while urn:x-wiley:21699380:media:jgra56749:jgra56749-math-0001 and dynamic pressure display no net effect. Due to the strong dependence on wind speed, we infer that jet impact rates may be solar cycle dependent as well as vary during solar wind transients. This is an important step towards forecasting the magnetospheric effects of magnetosheath jets, as it allows for predictions of jet impact rates based on measurements of the upstream solar wind.

Journal article

Good SW, Kilpua EKJ, LaMoury AT, Forsyth RJ, Eastwood JP, Möstl Cet al., 2019, Self‐similarity of ICME flux ropes: Observations by radially aligned spacecraft in the inner Heliosphere, Journal of Geophysical Research: Space Physics, Vol: 124, Pages: 4960-4982, ISSN: 2169-9380

Interplanetary coronal mass ejections (ICMEs) are a significant feature of the heliospheric environment and the primary cause of adverse space weather at the Earth. ICME propagation and the evolution of ICME magnetic field structure during propagation are still not fully understood. We analyze the magnetic field structures of 18 ICME magnetic flux ropes observed by radially aligned spacecraft in the inner heliosphere. Similarity in the underlying flux rope structures is determined through the application of a simple technique that maps the magnetic field profile from one spacecraft to the other. In many cases, the flux ropes show very strong underlying similarities at the different spacecraft. The mapping technique reveals similarities that are not readily apparent in the unmapped data and is a useful tool when determining whether magnetic field time series observed at different spacecraft are associated with the same ICME. Lundquist fitting has been applied to the flux ropes, and the rope orientations have been determined; macroscale differences in the profiles at the aligned spacecraft may be ascribed to differences in flux rope orientation. Assuming that the same region of the ICME was observed by the aligned spacecraft in each case, the fitting indicates some weak tendency for the rope axes to reduce in inclination relative to the solar equatorial plane and to align with the solar east‐west direction with heliocentric distance.Plain Language SummaryCoronal mass ejections (CMEs) are large eruptions of magnetic field and plasma from the Sun. When they arrive at the Earth, these eruptions can cause significant damage to ground and orbital infrastructure; forecasting this “space weather” impact of CMEs at the Earth remains a difficult task. The impact of individual CMEs is largely dependent on their magnetic field configurations, and an important aspect of space weather forecasting is understanding how CME field configuration changes with distance from t

Journal article

LaMoury AT, Hietala H, Plaschke F, Vuorinen L, Eastwood JPet al., Solar Wind Control of Magnetosheath Jet Formation and Propagation to the Magnetopause

Journal article

Koller F, Temmer M, Preisser L, Plaschke F, Geyer P, Jian LK, Roberts OW, Hietala H, LaMoury ATet al., Magnetosheath jet occurrence rate in relation to CMEs and SIRs

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=01051980&limit=30&person=true