Imperial College London

Dr Agnieszka Brandt-Talbot

Faculty of Natural SciencesDepartment of Chemistry

Imperial College Research Fellow



+44 (0)20 7594 2476agi Website




103Royal College of ScienceSouth Kensington Campus





Dr Agi Brandt-Talbot is an independent Research Fellow in the Department of Chemistry at Imperial College London.

She has authored over 20 scientific articles with more than 1500 citations and holds 3 patents. Dr Brandt received a BSc and MSc from Ludwig Maximilians University Munich, Germany. She joined Imperial College with a Porter Institute funded PhD studentship and was a Research Associate in the Department of Chemical Engineering. She also gained experience in technology commercialisation as the Business Manager of start-up company Econic Technologies.

Dr Brandt-Talbot's research interest is creating bio-derived materials and chemicals from sustainable biomass and the application of novel tailor-made solvents.

Dr Brandt-Talbot was awarded Imperial's President's Awards of Excellence for Outstanding Early Career Researcher in 2015, the Department of Chemical Engineering's Sir William Wakeham Award in 2016, and a 2017 Imperial College Research Fellowship by the Department of Chemistry. She is co-founder and Chief Scientific Officer of start-up company Chrysalix Technologies, who commercialise the ionoSolv process that Dr Brandt-Talbot discovered during her PhD.

Link to an interview with Dr Brandt.

Funded PhD position open

A PhD studentship in the production of renewable carbon fibres from lignin is currently open. More information about the project be found here. Please email a CV and cover letter to

Research Synopsis

In the last century the chemical industry has come to rely on the use of petroleum, 5-10% of petroleum is converted into myriads of useful compounds and materials, such as medicines, packaging, furniture and clothing.

Despite our extensive experience with oil as a fuel and chemical feedstock, further use is deemed unsustainable, due to its substantial contribution to climate change (petroleum use accounts for 1/3 of global CO2 emissions).

In order to eliminate dependency on this fossil resource, new processes based on renewable feedstocks are required. Lignocellulosic biomass is the best option for providing the next generation of chemical building blocks and sustainable fuels in a timely manner: it can be grown in large quantities in diverse locations, with potentially large greenhouse gas emissions savings and benefits to rural communities.

Benefits can be maximised by transforming all components contained in the biomass to functional materials, chemicals and affordable liquid fuels in an integrated biorefinery. 

Selected Publications

Journal Articles

Brandt A, Chen L, van Dongen BE, et al., 2015, Structural changes in lignins isolated using an acidic ionic liquid water mixture, Green Chemistry, Vol:17, ISSN:1463-9262, Pages:5019-5034

George A, Brandt A, Tran K, et al., 2015, Design of low-cost ionic liquids for lignocellulosic biomass pretreatment, Green Chemistry, Vol:17, ISSN:1463-9262, Pages:1728-1734

Brandt A, Ray MJ, To TQ, et al., 2011, Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid-water mixtures, Green Chemistry, Vol:13, ISSN:1463-9262, Pages:2489-2499

Brandt A, Grasvik J, Hallett JP, et al., 2013, Deconstruction of lignocellulosic biomass with ionic liquids, Green Chemistry, Vol:15, ISSN:1463-9262, Pages:550-583

More Publications