Imperial College London

Dr Agnieszka Brandt-Talbot

Faculty of Natural SciencesDepartment of Chemistry

Imperial College Research Fellow
 
 
 
//

Contact

 

+44 (0)20 7594 2476agi Website

 
 
//

Location

 

103Royal College of ScienceSouth Kensington Campus

//

Summary

 

Summary

Dr Agi Brandt-Talbot is an independent Research Fellow in the Department of Chemistry at Imperial College London.

She has authored over 20 scientific articles with more than 2000 citations and holds licensed 3 patents. Dr Brandt-Talbot's research interest is creating bio-derived materials and chemicals from sustainable biomass and the application of novel tailor-made solvents.

Dr Brandt-Talbot was awarded Imperial's President's Award of Excellence for Outstanding Early Career Researcher in 2015, the Department of Chemical Engineering's Sir William Wakeham Award in 2016, and a 2017 Imperial College Research Fellowship which she has taken up in the Department of Chemistry. She is co-founder and Chief Scientific Officer of start-up company Chrysalix Technologies.

Dr Brandt-Talbot received a BSc and an MSc from Ludwig-Maximilians-University Munich, Germany. She joined Imperial College with a Porter Institute funded PhD studentship and was a Research Associate in the Department of Chemical Engineering. She has also been the Business Manager of start-up company Econic Technologies.

Research Synopsis

In the last century the chemical industry has come to rely on the use of petroleum, 5-10% of petroleum is converted into myriads of useful compounds and materials, such as medicines, packaging, furniture and clothing.

Despite our extensive experience with oil as a source of fuels and chemicals, further use is deemed unsustainable, due to its substantial contribution to climate change (petroleum use accounts for 1/3 of human CO2 emissions).

We hence need to develop new chemical processes based on renewable feedstocks. Lignocellulosic biomass is the best option for providing the next generation of chemical building blocks in a timely manner: it can be grown in large quantities in diverse locations, with a potential for large greenhouse gas emissions savings and with benefits to rural communities.

Benefits can be maximised by transforming all components contained in the biomass in what is called the integrated biorefinery approach. A key solution may be the application of low-cost stable ionic liquids in biorefining.

Working with us

There are currently no PhD openings for a 2018 start, however, candidates with an outstanding track record can be supported for visiting postdoctoral scholarships. Applications for PhD scholarships will be supported again starting in 2019.

Selected Publications

Journal Articles

Brandt-Talbot A, Gschwend FJV, Fennell PS, et al., 2017, An economically viable ionic liquid for the fractionation of lignocellulosic biomass, Green Chemistry, Vol:19, ISSN:1463-9262, Pages:3078-3102

Brandt A, Chen L, van Dongen BE, et al., 2015, Structural changes in lignins isolated using an acidic ionic liquid water mixture, Green Chemistry, Vol:17, ISSN:1463-9262, Pages:5019-5034

Brandt A, Ray MJ, To TQ, et al., 2011, Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid-water mixtures, Green Chemistry, Vol:13, ISSN:1463-9262, Pages:2489-2499

Brandt A, Grasvik J, Hallett JP, et al., 2013, Deconstruction of lignocellulosic biomass with ionic liquids, Green Chemistry, Vol:15, ISSN:1463-9262, Pages:550-583

More Publications