Imperial College London

Dr T Ben Britton

Faculty of EngineeringDepartment of Materials

Lecturer
 
 
 
//

Contact

 

+44 (0)20 7594 2634b.britton Website

 
 
//

Location

 

B301Bessemer BuildingSouth Kensington Campus

//

Summary

 

Summary

For research, I specialise in experimental micromechanical characterisation, focusing on understanding deformation at the small scale with electron microscopy and micro-mechanical testing. This is funded through my RAEng Research Fellowship on "Better understanding of materials to make safer reactors", as well as through the HexMat consortium. I also run the MSc in Nuclear Engineering at Imperial College and coordinate the MEng in Nuclear programmes (Mechanical Engineering, Chemical Engineering, and Materials). I am a member of the Engineering Alloys Group, the Centre for Nuclear Engineering and the Rolls-Royce Nuclear UTC

My research focusses on understanding materials behaviour for energy, transport and the built environment. I target aim to understand the science of behaviour at the micro-mechanical lengthscale to drive technology and innovation in engineering.

For more information, please visit my group website.

My research interests include techniques such as electron backscatter diffraction (EBSD), digital image correlation (DIC), micro-mechanical test (e.g. nanoindentation, micropillar compression) and in-situ methods. This work focusses on the behaviour of hexagonal and cubic metals (e.g. Zr, Ti, Cu, Ni, Fe).

Currently I teach a first year undergraduate course on deformation of crystalline materials and a fourth year course on zirconium for nuclear power applications. I also lecture to post graduates on electron microscopy (SEM, EDX, EBSD, and FIB - notes are avaible on my group website).

I joined the Department of Materials as a Nuclear Metallurgy Fellow in 2012 and I started my RAEng fellowship in 2015. Previously I worked in the Department of Materials at the University of Oxford researching materials for fission and fusion power. My DPhil concerned the deformation behaviour of titanium alloys for aerospace applications and was completed in 2010 in Oxford.

I have recently been awarded the IOM3 silver medal which is in "recognition of an outstanding contribution to the broad field of materials science, engineering and technology, including promotion of their subject on a national or international basis."

You can find more about my work by following these links: my group websiteAcademia.eduScopus, and ORCID. I am on twitter: @BMatB

For more information about Nuclear Degrees at Imperial, please see here.

Selected Publications

Journal Articles

Jiang J, Yang J, Zhang T, et al., 2015, On the mechanistic basis of fatigue crack nucleation in Ni superalloy containing inclusions using high resolution electron backscatter diffraction, Acta Materialia, Vol:97, ISSN:1359-6454, Pages:367-379

Guo Y, Collins DM, Tarleton E, et al., 2015, Measurements of stress fields near a grain boundary: Exploring blocked arrays of dislocations in 3D, Acta Materialia, Vol:96, ISSN:1359-6454, Pages:229-236

Guo Y, Britton TB, Wilkinson AJ, 2014, Slip band-grain boundary interactions in commercial-purity titanium, Acta Materialia, Vol:76, ISSN:1873-2453, Pages:1-12

Ben Britton T, Jiang J, Karamched PS, et al., 2013, Probing Deformation and Revealing Microstructural Mechanisms with Cross-Correlation-Based, High-Resolution Electron Backscatter Diffraction, JOM, Vol:65, ISSN:1047-4838, Pages:1245-1253

Britton TB, Birosca S, Preuss M, et al., 2010, Electron backscatter diffraction study of dislocation content of a macrozone in hot-rolled Ti-6Al-4V alloy, Scripta Materialia, Vol:62, ISSN:1359-6462, Pages:639-642

More Publications