Imperial College London

ProfessorBorisLenhard

Faculty of MedicineInstitute of Clinical Sciences

Professor of Computational Biology
 
 
 
//

Contact

 

+44 (0)20 7594 0911b.lenhard Website

 
 
//

Assistant

 

Mr Alastair Douglas Ivor Williams +44 (0)20 3313 4318

 
//

Location

 

6.12CLMS BuildingHammersmith Campus

//

Summary

 

Publications

Publication Type
Year
to

194 results found

Lenhard B, Siriboonpiputtana T, So CWE, 2017, Transcriptional memory of cells of origin overrides β‐catenin requirement of MLL cancer stem cells, EMBO Journal, ISSN: 0261-4189

While β‐catenin has been demonstrated as an essential molecule and therapeutic target for various cancer stem cells (CSCs) including those driven by MLL fusions, here we show that transcriptional memory from cells of origin predicts AML patient survival and allows β‐catenin‐independent transformation in MLL‐CSCs derived from hematopoietic stem cell (HSC)‐enriched LSK population but not myeloid–granulocyte progenitors. Mechanistically, β‐catenin regulates expression of downstream targets of a key transcriptional memory gene, Hoxa9 that is highly enriched in LSK‐derived MLL‐CSCs and helps sustain leukemic self‐renewal. Suppression of Hoxa9 sensitizes LSK‐derived MLL‐CSCs to β‐catenin inhibition resulting in abolishment of CSC transcriptional program and transformation ability. In addition, further molecular and functional analyses identified Prmt1 as a key common downstream mediator for β‐catenin/Hoxa9 functions in LSK‐derived MLL‐CSCs. Together, these findings not only uncover an unexpectedly important role of cells of origin transcriptional memory in regulating CSC self‐renewal, but also reveal a novel molecular network mediated by β‐catenin/Hoxa9/Prmt1 in governing leukemic self‐renewal.

Journal article

Harmston N, Ing-Simmons E, Tan G, Perry M, Merkenschlager M, Lenhard Bet al., 2017, Topologically associating domains are ancient features that coincide with Metazoan clusters of extreme noncoding conservation, Nature Communications, Vol: 8, ISSN: 2041-1723

Developmental genes in metazoan genomes are surrounded by dense clusters of conserved noncoding elements (CNEs). CNEs exhibit unexplained extreme levels of sequence conservation, with many acting as developmental long-range enhancers. Clusters of CNEs define the span of regulatory inputs for many important developmental regulators and have been described previously as genomic regulatory blocks (GRBs). Their function and distribution around important regulatory genes raises the question of how they relate to 3D conformation of these loci. Here, we show that clusters of CNEs strongly coincide with topological organisation, predicting the boundaries of hundreds of topologically associating domains (TADs) in human and Drosophila. The set of TADs that are associated with high levels of noncoding conservation exhibit distinct properties compared to TADs devoid of extreme noncoding conservation. The close correspondence between extreme noncoding conservation and TADs suggests that these TADs are ancient, revealing a regulatory architecture conserved over hundreds of millions of years.Metazoan genomes contain many clusters of conserved noncoding elements. Here, the authors provide evidence that these clusters coincide with distinct topologically associating domains in humans and Drosophila, revealing a conserved regulatory genomic architecture.

Journal article

Cvetesic N, Lenhard B, 2017, Core promoters across the genome, Nature Biotechnology, Vol: 35, Pages: 123-124, ISSN: 1546-1696

Journal article

Cantone I, Dharmalingam G, Chan YW, Kohler AC, Lenhard B, Merkenschlager M, Fisher AGet al., 2017, Allele-specific analysis of cell fusion-mediated pluripotent reprograming reveals distinct and predictive susceptibilities of human X-linked genes to reactivation, Genome Biology, Vol: 18, ISSN: 1474-760X

BackgroundInactivation of one X chromosome is established early in female mammalian development and can be reversed in vivo and in vitro when pluripotency factors are re-expressed. The extent of reactivation along the inactive X chromosome (Xi) and the determinants of locus susceptibility are, however, poorly understood. Here we use cell fusion-mediated pluripotent reprograming to study human Xi reactivation and allele-specific single nucleotide polymorphisms (SNPs) to identify reactivated loci.ResultsWe show that a subset of human Xi genes is rapidly reactivated upon re-expression of the pluripotency network. These genes lie within the most evolutionary recent segments of the human X chromosome that are depleted of LINE1 and enriched for SINE elements, predicted to impair XIST spreading. Interestingly, this cadre of genes displays stochastic Xi expression in human fibroblasts ahead of reprograming. This stochastic variability is evident between clones, by RNA-sequencing, and at the single-cell level, by RNA-FISH, and is not attributable to differences in repressive histone H3K9me3 or H3K27me3 levels. Treatment with the DNA demethylating agent 5-deoxy-azacytidine does not increase Xi expression ahead of reprograming, but instead reveals a second cadre of genes that only become susceptible to reactivation upon induction of pluripotency.ConclusionsCollectively, these data not only underscore the multiple pathways that contribute to maintaining silencing along the human Xi chromosome but also suggest that transcriptional stochasticity among human cells could be useful for predicting and engineering epigenetic strategies to achieve locus-specific or domain-specific human Xi gene reactivation.

Journal article

Adlakha A, Armstrong-James DAJ, Lenhard B, 2016, CALCINEURIN INHIBITION IMPAIRS THE DENDRITIC CELL TRANSCRIPTIONAL RESPONSE TO ASPERGILLUS FUMIGATUS INFECTION IN LUNG TRANSPLANT RECIPIENTS, THORAX, Vol: 71, Pages: A1-A1, ISSN: 0040-6376

Journal article

Kolder IC, van der Plas-Duivesteijn SJ, Tan G, Wiegertjes GF, Forlenza M, Guler AT, Travin DY, Nakao M, Moritomo T, Irnazarow I, den Dunnen JT, Anvar SY, Jansen HJ, Dirks RP, Palmblad M, Lenhard B, Henkel CV, Spaink HPet al., 2016, A full-body transcriptome and proteome resource for the European common carp., BMC Genomics, Vol: 17, ISSN: 1471-2164

BACKGROUND: The common carp (Cyprinus carpio) is the oldest, most domesticated and one of the most cultured fish species for food consumption. Besides its economic importance, the common carp is also highly suitable for comparative physiological and disease studies in combination with the animal model zebrafish (Danio rerio). They are genetically closely related but offer complementary benefits for fundamental research, with the large body mass of common carp presenting possibilities for obtaining sufficient cell material for advanced transcriptome and proteome studies. RESULTS: Here we have used 19 different tissues from an F1 hybrid strain of the common carp to perform transcriptome analyses using RNA-Seq. For a subset of the tissues we also have performed deep proteomic studies. As a reference, we updated the European common carp genome assembly using low coverage Pacific Biosciences sequencing to permit high-quality gene annotation. These annotated gene lists were linked to zebrafish homologs, enabling direct comparisons with published datasets. Using clustering, we have identified sets of genes that are potential selective markers for various types of tissues. In addition, we provide a script for a schematic anatomical viewer for visualizing organ-specific expression data. CONCLUSIONS: The identified transcriptome and proteome data for carp tissues represent a useful resource for further translational studies of tissue-specific markers for this economically important fish species that can lead to new markers for organ development. The similarity to zebrafish expression patterns confirms the value of common carp as a resource for studying tissue-specific expression in cyprinid fish. The availability of the annotated gene set of common carp will enable further research with both applied and fundamental purposes.

Journal article

Adlakha A, Armstrong-James DPH, Lenhard B, 2016, The role of calcineurin inhibition in the dendritic cell response to Aspergillus fumigatus infection in lung transplant recipients, Publisher: LIPPINCOTT WILLIAMS & WILKINS, Pages: S371-S371, ISSN: 0041-1337

Conference paper

Cvetesic N, Dulic M, Bilus M, Sostaric N, Lenhard B, Gruic-Sovulj Iet al., 2016, Naturally Occurring Isoleucyl-tRNA Synthetase without tRNA-dependent Pre-transfer Editing, Journal of Biological Chemistry, Vol: 291, Pages: 8618-8631, ISSN: 1083-351X

Journal article

Adlakha A, Armstrong-James D, Lenhard B, 2016, Effect of calcineurin inhibition on phenotypic maturation of dendritic cells in an in-vitro model of invasive aspergillosis in lung transplant recipients, Spring Meeting on Clinician Scientists in Training, Publisher: ELSEVIER SCIENCE INC, Pages: 16-16, ISSN: 0140-6736

Conference paper

Tan G, Lenhard B, 2016, TFBSTools: an R/bioconductor package for transcription factor binding site analysis., Bioinformatics, Vol: 32, Pages: 1555-1556, ISSN: 1367-4803

The ability to efficiently investigate transcription factor binding sites (TFBSs) genome-wide is central to computational studies of gene regulation. TFBSTools is an R/Bioconductor package for the analysis and manipulation of TFBSs and their associated transcription factor profile matrices. TFBStools provides a toolkit for handling TFBS profile matrices, scanning sequences and alignments including whole genomes, and querying the JASPAR database. The functionality of the package can be easily extended to include advanced statistical analysis, data visualization and data integration. AVAILABILITY AND IMPLEMENTATION: The package is implemented in R and available under GPL-2 license from the Bioconductor website (http://bioconductor.org/packages/TFBSTools/). CONTACT: ge.tan09@imperial.ac.uk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Journal article

Haberle V, Lenhard B, 2016, Promoter architectures and developmental gene regulation., Seminars in Cell & Developmental Biology, Vol: 57, Pages: 11-23, ISSN: 1096-3634

Core promoters are minimal regions sufficient to direct accurate initiation of transcription and are crucial for regulation of gene expression. They are highly diverse in terms of associated core promoter motifs, underlying sequence composition and patterns of transcription initiation. Distinctive features of promoters are also seen at the chromatin level, including nucleosome positioning patterns and presence of specific histone modifications. Recent advances in identifying and characterizing promoters using next-generation sequencing-based technologies have provided the basis for their classification into functional groups and have shed light on their modes of regulation, with important implications for transcriptional regulation in development. This review discusses the methodology and the results of genome-wide studies that provided insight into the diversity of RNA polymerase II promoter architectures in vertebrates and other Metazoa, and the association of these architectures with distinct modes of regulation in embryonic development and differentiation.

Journal article

Cheung N, Fung TK, Zeisig BB, Holmes K, Rane JK, Mowen KA, Finn MG, Lenhard B, Chan LC, So CWEet al., 2016, Targeting aberrant epigenetic networks mediated by PRMT1 and KDM4C in acute myeloid leukemia, Cancer Cell, Vol: 29, Pages: 32-48, ISSN: 1878-3686

Transcriptional deregulation plays a major role in acute myeloid leukemia, and therefore identification of epigenetic modifying enzymes essential for the maintenance of oncogenic transcription programs holds the key to better understanding of the biology and designing effective therapeutic strategies for the disease. Here we provide experimental evidence for the functional involvement and therapeutic potential of targeting PRMT1, an H4R3 methyltransferase, in various MLL and non-MLL leukemias. PRMT1 is necessary but not sufficient for leukemic transformation, which requires co-recruitment of KDM4C, an H3K9 demethylase, by chimeric transcription factors to mediate epigenetic reprogramming. Pharmacological inhibition of KDM4C/PRMT1 suppresses transcription and transformation ability of MLL fusions and MOZ-TIF2, revealing a tractable aberrant epigenetic circuitry mediated by KDM4C and PRMT1 in acute leukemia.

Journal article

Nepal C, Coolen M, Hadzhiev Y, Cussigh D, Mydel P, Steen VM, Carninci P, Andersen JB, Bally-Cuif L, Müller F, Lenhard Bet al., 2015, Transcriptional, post-transcriptional and chromatin-associated regulation of pri-miRNAs, pre-miRNAs and moRNAs, Nucleic Acids Research, Vol: 44, Pages: 3070-3081, ISSN: 1362-4962

MicroRNAs (miRNAs) play a major role in the post-transcriptional regulation of target genes, especially in development and differentiation. Our understanding about the transcriptional regulation of miRNA genes is limited by inadequate annotation of primary miRNA (pri-miRNA) transcripts. Here, we used CAGE-seq and RNA-seq to provide genome-wide identification of the pri-miRNA core promoter repertoire and its dynamic usage during zebrafish embryogenesis. We assigned pri-miRNA promoters to 152 precursor-miRNAs (pre-miRNAs), the majority of which were supported by promoter associated post-translational histone modifications (H3K4me3, H2A.Z) and RNA polymerase II (RNAPII) occupancy. We validated seven miR-9 pri-miRNAs by in situ hybridization and showed similar expression patterns as mature miR-9. In addition, processing of an alternative intronic promoter of miR-9–5 was validated by 5′ RACE PCR. Developmental profiling revealed a subset of pri-miRNAs that are maternally inherited. Moreover, we show that promoter-associated H3K4me3, H2A.Z and RNAPII marks are not only present at pri-miRNA promoters but are also specifically enriched at pre-miRNAs, suggesting chromatin level regulation of pre-miRNAs. Furthermore, we demonstrated that CAGE-seq also detects 3′-end processing of pre-miRNAs on Drosha cleavage site that correlates with miRNA-offset RNAs (moRNAs) production and provides a new tool for detecting Drosha processing events and predicting pre-miRNA processing by a genome-wide assay.

Journal article

Adlakha AG, Armstrong-James DPH, Lenhard B, 2015, CALCINEURIN INHIBITION IMPAIRS PHENOTYPIC MATURATION OF DENDRITIC CELLS IN A IN VITRO MODEL OF INVASIVE ASPERGILLOSIS IN LUNG TRANSPLANT RECIPIENTS, Winter Meeting of the British-Thoracic-Society, Publisher: BMJ PUBLISHING GROUP, Pages: A48-A49, ISSN: 0040-6376

Conference paper

Hurst LD, Ghanbarian AT, Forrest ARR, FANTOM consortium, Huminiecki Let al., 2015, The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome., PLoS Biol, Vol: 13

X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression

Journal article

Stadhouders R, Cico A, Stephen T, Thongjuea S, Kolovos P, Baymaz HI, Yu X, Demmers J, Bezstarosti K, Maas A, Barroca V, Kockx C, Ozgur Z, van Ijcken W, Arcangeli M-L, Andrieu-Soler C, Lenhard B, Grosveld F, Soler Eet al., 2015, Control of developmentally primed erythroid genes by combinatorial co-repressor actions, Nature Communications, Vol: 6, ISSN: 2041-1723

How transcription factors (TFs) cooperate within large protein complexes to allow rapid modulation of gene expression during development is still largely unknown. Here we show that the key haematopoietic LIM-domain-binding protein-1 (LDB1) TF complex contains several activator and repressor components that together maintain an erythroid-specific gene expression programme primed for rapid activation until differentiation is induced. A combination of proteomics, functional genomics and in vivo studies presented here identifies known and novel co-repressors, most notably the ETO2 and IRF2BP2 proteins, involved in maintaining this primed state. The ETO2–IRF2BP2 axis, interacting with the NCOR1/SMRT co-repressor complex, suppresses the expression of the vast majority of archetypical erythroid genes and pathways until its decommissioning at the onset of terminal erythroid differentiation. Our experiments demonstrate that multimeric regulatory complexes feature a dynamic interplay between activating and repressing components that determines lineage-specific gene expression and cellular differentiation.

Journal article

Harmston N, Ing-Simmons E, Perry M, Baresic A, Lenhard Bet al., 2015, GenomicInteractions: An R/Bioconductor package for manipulating and investigating chromatin interaction data, BMC Genomics, Vol: 16, ISSN: 1471-2164

Background: Precise quantitative and spatiotemporal control of gene expression is necessary to ensure propercellular differentiation and the maintenance of homeostasis. The relationship between gene expression andthe spatial organisation of chromatin is highly complex, interdependent and not completely understood. Thedevelopment of experimental techniques to interrogate both the higher-order structure of chromatin and theinteractions between regulatory elements has recently lead to important insights on how gene expression iscontrolled. The ability to gain these and future insights is critically dependent on computational tools for theanalysis and visualisation of data produced by these techniques.Results and conclusion: We have developed GenomicInteractions, a freely available R/Bioconductor packagedesigned for processing, analysis and visualisation of data generated from various types of chromosomeconformation capture experiments. The package allows the easy annotation and summarisation of largegenome-wide datasets at both the level of individual interactions and sets of genomic features, and providesseveral different methods for interrogating and visualising this type of data. We demonstrate this package’sutility by showing example analyses performed on interaction datasets generated using Hi-C and ChIA-PET.

Journal article

Mathelier A, Fornes O, Arenillas DJ, Chen CY, Denay G, Lee J, Shi W, Shyr C, Tan G, Worsley-Hunt R, Zhang AW, Parcy F, Lenhard B, Sandelin A, Wasserman WWet al., 2015, JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles., Nucleic Acids Research, Vol: 44, Pages: D110-D115, ISSN: 1362-4962

JASPAR (http://jaspar.genereg.net) is an open-access database storing curated, non-redundant transcription factor (TF) binding profiles representing transcription factor binding preferences as position frequency matrices for multiple species in six taxonomic groups. For this 2016 release, we expanded the JASPAR CORE collection with 494 new TF binding profiles (315 in vertebrates, 11 in nematodes, 3 in insects, 1 in fungi and 164 in plants) and updated 59 profiles (58 in vertebrates and 1 in fungi). The introduced profiles represent an 83% expansion and 10% update when compared to the previous release. We updated the structural annotation of the TF DNA binding domains (DBDs) following a published hierarchical structural classification. In addition, we introduced 130 transcription factor flexible models trained on ChIP-seq data for vertebrates, which capture dinucleotide dependencies within TF binding sites. This new JASPAR release is accompanied by a new web tool to infer JASPAR TF binding profiles recognized by a given TF protein sequence. Moreover, we provide the users with a Ruby module complementing the JASPAR API to ease programmatic access and use of the JASPAR collection of profiles. Finally, we provide the JASPAR2016 R/Bioconductor data package with the data of this release.

Journal article

Ishibashi M, Manning E, Shoubridge C, Krecsmarik M, Hawkins TA, Giacomotto J, Zhao T, Mueller T, Bader PI, Cheung SW, Stankiewicz P, Bain NL, Hackett A, Reddy CCS, Mechaly AS, Peers B, Wilson SW, Lenhard B, Bally-Cuif L, Gecz J, Becker TS, Rinkwitz Set al., 2015, Copy number variants in patients with intellectual disability affect the regulation of ARX transcription factor gene, Human Genetics, Vol: 134, Pages: 1163-1182, ISSN: 1432-1203

Protein-coding mutations in the transcriptionfactor-encoding gene ARX cause various forms of intellectualdisability (ID) and epilepsy. In contrast, variationsin surrounding non-coding sequences are correlated withmilder forms of non-syndromic ID and autism and hadsuggested the importance of ARX gene regulation in theetiology of these disorders. We compile data on severalnovel and some already identified patients with or withoutID that carry duplications of ARX genomic region and consider likely genetic mechanisms underlying theneurodevelopmental defects. We establish the long-rangeregulatory domain of ARX and identify its brain regionspecificautoregulation. We conclude that neurodevelopmentaldisturbances in the patients may not simply arisefrom increased dosage due to ARX duplication. This isfurther exemplified by a small duplication involving a nonfunctionalARX copy, but with duplicated enhancers. ARXenhancers are located within a 504-kb region and regulateexpression specifically in the forebrain in developing andadult zebrafish. Transgenic enhancer-reporter lines wereused as in vivo tools to delineate a brain region-specific negative and positive autoregulation of ARX. We findautorepression of ARX in the telencephalon and autoactivationin the ventral thalamus. Fluorescently labeled brainregions in the transgenic lines facilitated the identificationof neuronal outgrowth and pathfinding disturbances in theventral thalamus and telencephalon that occur when arxadosage is diminished. In summary, we have established amodel for how breakpoints in long-range gene regulationalter the expression levels of a target gene brain regionspecifically,and how this can cause subtle neuronal phenotypesrelating to the etiology of associated neuropsychiatricdisease.

Journal article

Harmston N, Baresic A, Lenhard B, 2015, The mystery of extreme non-coding conservation (vol 368, 20130021, 2013), Publisher: ROYAL SOC

Other

Haberle V, Forrest ARR, Hayashizaki Y, Carninci P, Lenhard Bet al., 2015, <i>CAGEr</i>: precise TSS data retrieval and high-resolution promoterome mining for integrative analyses, NUCLEIC ACIDS RESEARCH, Vol: 43, ISSN: 0305-1048

Journal article

Naville M, Ishibashi M, Ferg M, Bengani H, Rinkwitz S, Krecsmarik M, Hawkins TA, Wilson SW, Manning E, Chilamakuri CSR, Wilson DI, Louis A, Raymond FL, Rastegar S, Straehle U, Lenhard B, Bally-Cuif L, van Heyningen V, FitzPatrick DR, Becker TS, Roest Crollius Het al., 2015, Long-range evolutionary constraints reveal <i>cis</i>-regulatory interactions on the human X chromosome, NATURE COMMUNICATIONS, Vol: 6, ISSN: 2041-1723

Journal article

Danks GB, Raasholm M, Campsteijn C, Long AM, Manak JR, Lenhard B, Thompson EMet al., 2015, <i>Trans</i>-Splicing and Operons in Metazoans: Translational Control in Maternally Regulated Development and Recovery from Growth Arrest, MOLECULAR BIOLOGY AND EVOLUTION, Vol: 32, Pages: 585-599, ISSN: 0737-4038

Journal article

Ing-Simmons E, Seitan VC, Faure AJ, Flicek P, Carroll T, Dekker J, Fisher AG, Lenhard B, Merkenschlager Met al., 2015, Spatial enhancer clustering and regulation of enhancer-proximal genes by cohesin, Genome Research, Vol: 25, Pages: 504-513, ISSN: 1054-9803

In addition to mediating sister chromatid cohesion during the cell cycle, the cohesin complex associates with CTCF and with active gene regulatory elements to form long-range interactions between its binding sites. Genome-wide chromosome conformation capture had shown that cohesin's main role in interphase genome organization is in mediating interactions within architectural chromosome compartments, rather than specifying compartments per se. However, it remains unclear how cohesin-mediated interactions contribute to the regulation of gene expression. We have found that the binding of CTCF and cohesin is highly enriched at enhancers and in particular at enhancer arrays or “super-enhancers” in mouse thymocytes. Using local and global chromosome conformation capture, we demonstrate that enhancer elements associate not just in linear sequence, but also in 3D, and that spatial enhancer clustering is facilitated by cohesin. The conditional deletion of cohesin from noncycling thymocytes preserved enhancer position, H3K27ac, H4K4me1, and enhancer transcription, but weakened interactions between enhancers. Interestingly, ∼50% of deregulated genes reside in the vicinity of enhancer elements, suggesting that cohesin regulates gene expression through spatial clustering of enhancer elements. We propose a model for cohesin-dependent gene regulation in which spatial clustering of enhancer elements acts as a unified mechanism for both enhancer-promoter “connections” and “insulation.”

Journal article

Stadhouders R, Aktuna S, Thongjuea S, Aghajanirefah A, Pourfarzad F, van IJcken W, Lenhard B, Rooks H, Best S, Menzel S, Grosveld F, Thein SL, Soler Eet al., 2014, <i>HBS1L</i>-<i>MYB</i> intergenic variants modulate fetal hemoglobin via long-range <i>MYB</i> enhancers, JOURNAL OF CLINICAL INVESTIGATION, Vol: 124, Pages: 1699-1710, ISSN: 0021-9738

Journal article

Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, Chen Y, Zhao X, Schmidl C, Suzuki T, Ntini E, Arner E, Valen E, Li K, Schwarzfischer L, Glatz D, Raithel J, Lilje B, Rapin N, Bagger FO, Jorgensen M, Andersen PR, Bertin N, Rackham O, Burroughs AM, Baillie JK, Ishizu Y, Shimizu Y, Furuhata E, Maeda S, Negishi Y, Mungall CJ, Meehan TF, Lassmann T, Itoh M, Kawaji H, Kondo N, Kawai J, Lennartsson A, Daub CO, Heutink P, Hume DA, Jensen TH, Suzuki H, Hayashizaki Y, Mueller F, Forrest ARR, Carninci P, Rehli M, Sandelin Aet al., 2014, An atlas of active enhancers across human cell types and tissues, NATURE, Vol: 507, Pages: 455-+, ISSN: 0028-0836

Journal article

Forrest ARR, Kawaji H, Rehli M, Baillie JK, de Hoon MJL, Haberle V, Lassmann T, Kulakovskiy IV, Lizio M, Itoh M, Andersson R, Mungall CJ, Meehan TF, Schmeier S, Bertin N, Jorgensen M, Dimont E, Arner E, Schmidl C, Schaefer U, Medvedeva YA, Plessy C, Vitezic M, Severin J, Semple CA, Ishizu Y, Young RS, Francescatto M, Alam I, Albanese D, Altschuler GM, Arakawa T, Archer JAC, Arner P, Babina M, Rennie S, Balwierz PJ, Beckhouse AG, Pradhan-Bhatt S, Blake JA, Blumenthal A, Bodega B, Bonetti A, Briggs J, Brombacher F, Burroughs AM, Califano A, Cannistraci CV, Carbajo D, Chen Y, Chierici M, Ciani Y, Clevers HC, Dalla E, Davis CA, Detmar M, Diehl AD, Dohi T, Drablos F, Edge ASB, Edinger M, Ekwall K, Endoh M, Enomoto H, Fagiolini M, Fairbairn L, Fang H, Farach-Carson MC, Faulkner GJ, Favorov AV, Fisher ME, Frith MC, Fujita R, Fukuda S, Furlanello C, Furuno M, Furusawa J-I, Geijtenbeek TB, Gibson AP, Gingeras T, Goldowitz D, Gough J, Guhl S, Guler R, Gustincich S, Ha TJ, Hamaguchi M, Hara M, Harbers M, Harshbarger J, Hasegawa A, Hasegawa Y, Hashimoto T, Herlyn M, Hitchens KJ, Sui SJH, Hofmann OM, Hoof I, Hori F, Huminiecki L, Iida K, Ikawa T, Jankovic BR, Jia H, Joshi A, Jurman G, Kaczkowski B, Kai C, Kaida K, Kaiho A, Kajiyama K, Kanamori-Katayama M, Kasianov A, Kasukawa T, Katayama S, Kato S, Kawaguchi S, Kawamoto H, Kawamura YI, Kawashima T, Kempfle JS, Kenna TJ, Kere J, Khachigian LM, Kitamura T, Klinken SP, Knox AJ, Kojima M, Kojima S, Kondo N, Koseki H, Koyasu S, Krampitz S, Kubosaki A, Kwon AT, Laros JFJ, Lee W, Lennartsson A, Li K, Lilje B, Lipovich L, Mackay-sim A, Manabe R-I, Mar JC, Marchand B, Mathelier A, Mejhert N, Meynert A, Mizuno Y, Morais DADL, Morikawa H, Morimoto M, Moro K, Motakis E, Motohashi H, Mummery CL, Murata M, Nagao-Sato S, Nakachi Y, Nakahara F, Nakamura T, Nakamura Y, Nakazato K, Van Nimwegen E, Ninomiya N, Nishiyori H, Noma S, Nozaki T, Ogishima S, Ohkura N, Ohmiya H, Ohno H, Ohshima M, Okada-Hatakeyama M, Okazaki Y, Orlando V, Ovchinnikov DAet al., 2014, A promoter-level mammalian expression atlas, Nature, Vol: 507, Pages: 462-470, ISSN: 0028-0836

Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly ‘housekeeping’, whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research.

Journal article

Haberle V, Li N, Hadzhiev Y, Plessy C, Previti C, Nepal C, Gehrig J, Dong X, Akalin A, Suzuki AM, van IJcken WFJ, Armant O, Ferg M, Straehle U, Carninci P, Mueller F, Lenhard Bet al., 2014, Two independent transcription initiation codes overlap on vertebrate core promoters, Nature, Vol: 507, Pages: 381-385, ISSN: 0028-0836

A core promoter is a stretch of DNA surrounding the transcription start site (TSS) that integrates regulatory inputs1 and recruits general transcription factors to initiate transcription2. The nature and causative relationship of the DNA sequence and chromatin signals that govern the selection of most TSSs by RNA polymerase II remain unresolved. Maternal to zygotic transition represents the most marked change of the transcriptome repertoire in the vertebrate life cycle3,4,5,6. Early embryonic development in zebrafish is characterized by a series of transcriptionally silent cell cycles regulated by inherited maternal gene products: zygotic genome activation commences at the tenth cell cycle, marking the mid-blastula transition7. This transition provides a unique opportunity to study the rules of TSS selection and the hierarchy of events linking transcription initiation with key chromatin modifications. We analysed TSS usage during zebrafish early embryonic development at high resolution using cap analysis of gene expression8, and determined the positions of H3K4me3-marked promoter-associated nucleosomes9. Here we show that the transition from the maternal to zygotic transcriptome is characterized by a switch between two fundamentally different modes of defining transcription initiation, which drive the dynamic change of TSS usage and promoter shape. A maternal-specific TSS selection, which requires an A/T-rich (W-box) motif, is replaced with a zygotic TSS selection grammar characterized by broader patterns of dinucleotide enrichments, precisely aligned with the first downstream (+1) nucleosome. The developmental dynamics of the H3K4me3-marked nucleosomes reveal their DNA-sequence-associated positioning at promoters before zygotic transcription and subsequent transcription-independent adjustment to the final position downstream of the zygotic TSS. The two TSS-defining grammars coexist, often physically overlapping, in core promoters of constitutively expressed genes t

Journal article

Pascarella G, Lazarevic D, Plessy C, Bertin N, Akalin A, Vlachouli C, Simone R, Faulkner GJ, Zucchelli S, Kawai J, Daub CO, Hayashizaki Y, Lenhard B, Carninci P, Gustincich Set al., 2014, NanoCAGE analysis of the mouse olfactory epithelium identifies the expression of vomeronasal receptors and of proximal LINE elements, FRONTIERS IN CELLULAR NEUROSCIENCE, Vol: 8

Journal article

Sharma Y, Chilamakuri CSR, Bakke M, Lenhard Bet al., 2014, Computational Characterization of Modes of Transcriptional Regulation of Nuclear Receptor Genes, PLOS ONE, Vol: 9, ISSN: 1932-6203

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: limit=30&id=00711330&person=true&page=3&respub-action=search.html