Imperial College London


Faculty of MedicineDepartment of Medicine

Honorary Clinical Senior Lecturer



+44 (0)20 3311 7042b.seemungal




Miss Lorna Stevenson +44 (0)20 3313 5525




10L17Lab BlockCharing Cross Campus







FENS Satellite - Berlin 12th July 2018


Elena Calzolari: Post-doctoral research associate

Mariya Chepisheva: Research assistant

Heiko Rust: Senior Clinical Research Fellow

Rebecca Smith: NIHR Clinical Doctoral Research Fellow

Min Xiang: Post-doctoral research assistant

Ari Baheerathan: Clinical Research Fellow (starting mid-2018).


Current funding

  • Some more good news (June 2018) - we have been successful with an application to the US Department of Defense for a multi-centre study assessing the factors that predispose and promote PPPD (persistent perceptual postural dizziness) in mild head trauma. This is a US-UK-Italian collaboration with the Mayo Clinic (Prof Staab and Dr Brown) and with the University of Rome (Drs Indovina, Toschi and Dr Passamonti - currently Cambridge, UK).
  • Thanks to the Racing Foundation for funding our latest collaborative research - with Dr Jerry Hill and Professor Danilo Mandic - "Concussion Assessment and Post-Fall Monitoring System" (start end 2018).
  • Well done to Rebecca who has been awarded an NIHR Research Fellowship (started April 2018)! 
  • Well done to Ari who has been awarded an Imperial Charity Research Fellowship (starting late 2018)!


Barry Seemungal (PhD FRCP) is a neurologist who researches the brain mechanisms of vestibular function and dysfunction, with a focus on vestibular cognition. He was born and raised in Trinidad, West Indies and then studied medicine in Cardiff. He has a strong affinity for general medicine having spent three years as a specialist registrar in internal medicine and endocrinology in Oxford and then trained as a neurologist in London. He completed a PhD in vestibular neurosciences - 'The Mechanisms and Loci of Vestibular Perception' - at the MRC Human Movement and Balance Unit (Institute of Neurology, Queen Square, London) under Profs Adolfo Bronstein and Michael Gresty.

Dr Seemungal was awarded a prestigious Health Foundation & Academy of Medical Sciences and Clinician Scientist Fellowship in 2008. He has current funding as principal investigator from the Medical Research Council UK, NIHR Imperial Biomedical Research Centre and Imperial Health Charity.

He enjoys teaching and training. In 2003, in his first year as a neurology trainee, he held the now historical post of Resident Medical Officer at the Hammersmith Hospital. More recently he has developed an interest in service delivery and is the Trust lead liaison for neurology for the North West London 'STP' (sustainability and transformation plan).

He relaxes by playing football and going on outdoor holidays with his family. He has been a keen photographer since childhood and enjoys the visual arts.

Keywords: Vestibular Perception, Balance, Falls, Vertigo, TBI, Stroke, Dementia, Dopamine, Brain Imaging, Brain Stimulation.

Previous grant funding:

Previous funding


We have funding for an upcoming a research assistant post that has not yet been formalised or advertised but please email to arrange an informal chat.



1 supervision


Dr Yuliya Nigmatullina

Dr Shamim Quadir

NIHR Research MSc

Bill Tahtis

2 supervision

Dr Hena Ahmad

Dr Diego Kaski

Previous visiting and fixed term researchers:

Tom Cronin. Clinical Research Fellow (current - neurology academic clinical fellow Newcastle).

Hannah Streat: Visiting researcher (Engineering undergraduate, Cambridge University).

Recent Project students (including MSc & BSc)

Raymond Fu, Bilal Abou-El-Ela Bourquin, Matt Sargeant, Emiko Sykes, Joy Arthur, Crystal Yang, Jay Kotecha, Hetvi Bhatt.


Anil Bharat - Imperial (BRC Stroke Project)

Deborah Bull - Kings (Dance therapy study)

John Golding - Univ Westminster (Dance therapy study).

Danilo Mandic - Imperial (BRC Stroke Project)

Marousa Pavlou - Kings (Dance therapy study).

Simon Schultz - Imperial (Dopamine modulation of visual perceptual function)

David Sharp - Imperial (MRC TBI vestibulopathy study)

Dominic Straumann - ETH, Zurich (Imbalance in concussion)

Mark Wilson - Imperial (MRC TBI vestibulopathy study)

Eric Viirre - UCSD, San Diego (diagnosis in dizziness)


Yousif N, Fu RZ, Abou-El-Ela Bourquin B, Bhrugubanda V, Schultz SR, Seemungal BM. Dopamine Activation Preserves Visual Motion Perception Despite Noise Interference of Human V5/MT. J Neurosci. 2016 Sep 7;36(36):9303-12. [OPEN ACCESS].

Kaski D, Quadir S, Nigmatullina Y, Malhotra PA, Bronstein AM, Seemungal BM. Temporoparietal encoding of space and time during vestibular-guided orientation. Brain. 2016 Feb;139(Pt 2):392-403. [OPEN ACCESS].

Yousif N, Bhatt H, Bain PG, Nandi D, Seemungal BM. The effect of pedunculopontine nucleus deep brain stimulation on postural sway and vestibular perception. Eur J Neurol. 2016 Mar;23(3):668-70. [OPEN ACCESS]

Nigmatullina Y, Hellyer PJ, Nachev P, Sharp DJ, Seemungal BM. The neuroanatomical correlates of training-related perceptuo-reflex uncoupling in dancers. Cereb Cortex. 2015;25:554-62. [OPEN ACCESS].

Seemungal BM, Guzman-Lopez J, Arshad Q, Schultz SR, Walsh V, Yousif N. Vestibular activation differentially modulates human early visual cortex and V5/MT excitability and response entropy. Cereb Cortex. 2013 Jan;23(1):12-9. [OPEN ACCESS].

Seemungal BM. The cognitive neurology of the vestibular system. Curr Opin Neurol. 2014 Feb;27(1):125-32.

(Consensus paper) Lempert T, Olesen J, Furman J, Waterston J, Seemungal B, Carey J, Bisdorff A, Versino M, Evers S, Newman-Toker D. Vestibular migraine: diagnostic criteria. J Vestib Res. 2012;22(4):167-72. [OPEN ACCESS].



  • Online tools to help General Practitioners to manage the dizzy patient - Click Online tool.
  • Help for hospital doctors dealing with acute vertigo - WHEN DOES A PATIENT WITH ACUTE VERTIGO NEED A BRAIN SCAN?

Taken from Seemungal. Current Opinions in Neurology, 2007:

 Acute brain imaging (ideally MRI) is mandatory if there are one or more of the following in a case with acute persisting vertigo:

  1. Hyperacute onset vertigo (seconds) that persists.
  2. Acute vertigo with a normal head impulse test.
  3. Acute vertigo with new onset headache (especially occpital).
  4. Acute vertigo with any central signs, inlcuding gait or truncal ataxia.
  5. Acute vertigo and deafness without a typical Meniere's history.



Member of NHS England Strategic Clinical Network for Neurology (London) - I was involved in the neurology 'common conditions' working group (click for the report published in December 2016). The aim of this working group was to rebalance the referral pattern between the community and acute hospitals for common neurological conditions. One model involves a fully integrated service linking the community and the acute hospital. For example, for dizziness, the hospital team would train and support a community team to see the majority of dizzy patients. More complex and/or acute vertigo cases (e.g. potential strokes) would be seen by the hospital team.

Member of Association of British Neurologists Acute Neurology Advisory board.

Member of the Barany Society Vestibular Migraine Workign Group - involved in the working group that published the first classification for vestibular migraine.

Registered expert on the European Research and Innovation database.

Expert review of the United Kingdom ‘NICE’ guidelines for vertigo & dizziness.

FENS Satellite meeting - Chaired a European conference on Brain Plasticity in the Vestibular system (‘FENS’ Satellite conference – 2014).


This includes masterclasses on managing dizziness at the Royal College of Physicians, at BMJ Masterclasses in India and at the 1st and 2nd European Academy of Neurology (EAN) meetings in Berlin (2015) and Copenhagen (2016).


Participates in the Trust acute neurology rota. Provides an acute vertigo service with colleagues (Prof Adolfo Bronstein) at Imperial Healthcare NHS Trust. Together, they provide an acute vertigo service to the Trust A&E's, Hyperacute Stroke Unit at Charing Cross and the Major Trauma Unit at St Mary’s Hospital. 



The Brain Mechanisms and Loci of Human Vestibular Perception.

A particular theme of our research is the uncoupling of perception and reflex function in the vestibular and ocular-motor system. We have published a brain imaging study which showed that the vestibular cerebellar grey matter is key in modulating sensations of dizziness separate from vestibular ocular reflex responses. In addition, we have demonstrated an extensive white matter cortical network involved in mediating vertigo sensation. These findings in healthy humans were corroborated in a recent human lesion study in which the loci of vestibular perception were probed in acute stroke patients.

Vestibular Mechanisms and Human Brain Diseases.

We are now extending our techniques into understanding the higher-order vestibular contributions to neurodegenerative diseases such as Parkinson's Disease. Our recent work aims to understand the brain mechanisms underlying effects upon balance function with novel deep brain stimulation targets in Parkinson's patients.


The Mechanisms of Brain Plasticity and Treating Balance Disorders.


This meeting focused on the brain plasticity in the vestibular and ocular motor systems. The speakers were from a variety of backgrounds including electrophysiology, pharmacology, optogenetics, computational modelling, scientific studies of human brain function as well as clinical studies. (Conference webpage).



Environmental change or change in our ‘internal milieu’ due to disease, poses a challenge to the survival of the individual. Brain plasticity is a key contributor to our remarkable capacity to adapt to external or internal change. Such plasticity is utilised in rehabilitation regimens be they physical or cognitive behavioural therapy. Occasionally brain plasticity may go wrong and cause symptoms. In my clinic a common if under-recognised condition called Visually-Induced Dizziness, may be due to such brain plasticity gone wrong.

We use the well characterised vestibular and ocular motor systems to measure and understand brain mechanisms of plasticity. By understanding brain plasticity better we aim to improve treatments for brain diseases that can be affected by the brain processes of plasticity.



How the dancer’s brain adapts to repeated pirouetting.

We recently demonstrated the brain adaptation in dancers that enable them to suppress dizziness following a pirouette. We found that the vestibular cerebellum grey matter changed in line with the amount of training dancers did. This publication was covered in the media locally and internationally (see news). We are translating these findings in developing a new therapy for chronic dizzy patients. Together with colleagues from Kings College London and University College London, we are developing a dance-based treatment for patients with chronic dizziness. We also aim to combine this therapy with medication to speed recovery from chronic dizziness. We will also apply a modified version of this therapy to other neurological conditions such as rehabilitation for stroke patients.



Does dopamine D1 / D2 receptor modulation affect visual motion perceptual function? A potential novel role for dopamine in early sensory processing.

Taken from Yousif et al. 2016 J Neurosci. In Press.

When processing sensory signals, the brain must account for noise, both in the stimulus and that arising from within its own neuronal circuitry. Dopamine receptor activation is known to enhance both visual cortical signal-to-noise-ratio (‘SNR’) and visual perceptual performance, however it is unknown if these two Dopamine-mediated phenomena are linked. To assess this link we used single pulse transcranial magnetic stimulation (TMS) applied to visual cortical area V5/MT to focally reduce the SNR, and hence disrupt visual motion discrimination performance to visual targets located in the same retinotopic space. The hypothesis that Dopamine receptor activation enhances perceptual performance by improving cortical SNR predicts that Dopamine activation should antagonise TMS-disruption of visual perception. We assessed this hypothesis via a double-blinded, placebo controlled study with dopamine receptor agonists Cabergoline (D2 agonist) and Pergolide (D1/D2 agonist), administered in separate sessions (separated by 2 weeks) in 12 healthy volunteers in a William’s balance-order design. TMS degraded visual motion perception when the evoked-phosphene and the visual stimulus overlapped in time and space, in the Placebo and Cabergoline conditions but not with Pergolide. This suggests that Dopamine D1 or combined D1 and D2 receptor activation, enhances cortical SNR to boost perceptual performance. That local visual cortical excitability was unchanged across drug conditions suggests the involvement of long-range intra-cortical interactions in this D1 effect. Since increased internal noise (and hence lower SNR) can impair visual perceptual learning, then improving visual cortical SNR via D1/D2 agonist therapy may be useful in boosting rehabilitation programmes involving visual perceptual training.



Research goal:

Our goal is to utilise a knowledge of the brain mechanisms of plasticity to help improve treatment, not just for patients with vestibular or eye movement problems but also for those with chronic neurological conditions such as traumatic brain injury, stroke or multiple sclerosis. We aim to use adjuvant therapy such as brain stimulation and drugs, to enhance plastic change and hence speed recovery with physical and cognitive therapy.




Selected Publications

Journal Articles

Kaski D, Quadir S, Nigmatullina Y, et al., 2016, Temporoparietal encoding of space and time during vestibular-guided orientation, Brain, Vol:139, ISSN:0006-8950, Pages:392-403

Nigmatullina Y, Hellyer PJ, Nachev P, et al., 2015, The Neuroanatomical Correlates of Training-Related Perceptuo-Reflex Uncoupling in Dancers, Cerebral Cortex, Vol:25, ISSN:1047-3211, Pages:554-562

Seemungal BM, Guzman-Lopez J, Arshad Q, et al., 2013, Vestibular Activation Differentially Modulates Human Early Visual Cortex and V5/MT Excitability and Response Entropy, Cerebral Cortex, Vol:23, ISSN:1047-3211, Pages:12-+

Guzman-Lopez J, Silvanto J, Seemungal BM, 2011, Visual motion adaptation increases the susceptibility of area V5/MT to phosphene induction by transcranial magnetic stimulation, Clinical Neurophysiology, Vol:122, ISSN:1388-2457, Pages:1951-1955

Seemungal BM, 2007, Neuro-otological emergencies, Current Opinion in Neurology, Vol:20, ISSN:1350-7540, Pages:32-39

More Publications