Imperial College London

Dr Billy Wu

Faculty of EngineeringDyson School of Design Engineering

Senior Lecturer
 
 
 
//

Contact

 

+44 (0)20 7594 6385billy.wu Website

 
 
//

Location

 

Dyson BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

53 results found

Liu X, Qian X, Tang W, Luo H, Zhao Y, Tan R, Qiao M, Gao X, Hua Y, Wang H, Zhao S, Lai C, Titirici M, Brandon N, Yang S, Wu Bet al., 2021, Designer uniform Li plating/stripping through lithium–cobalt alloying hierarchical scaffolds for scalable high-performance lithium-metal anodes, Journal of Energy Chemistry, Vol: 52, Pages: 385-392, ISSN: 2095-4956

Lithium metal anodes are of great interest for advanced high-energy density batteries such as lithium-air, lithium-sulfur and solid-state batteries, due to their low electrode potential and ultra-high theoretical capacity. There are, however, several challenges limiting their practical applications, which include low coulombic efficiency, the uncontrollable growth of dendrites and poor rate capability. Here, a rational design of 3D structured lithium metal anodes comprising of in-situ growth of cobalt-decorated nitrogen-doped carbon nanotubes on continuous carbon nanofibers is demonstrated via electrospinning. The porous and free-standing scaffold can enhance the tolerance to stresses resulting from the intrinsic volume change during Li plating/stripping, delivering a significant boost in both charge/discharge rates and stable cycling performance. A binary Co-Li alloying phase was generated at the initial discharge process, creating more active sites for the Li nucleation and uniform deposition. Characterization and density functional theory calculations show that the conductive and uniformly distributed cobalt-decorated carbon nanotubes with hierarchical structure can effectively reduce the local current density and more easily absorb Li atoms, leading to more uniform Li nucleation during plating. The current work presents an advance on scalable and cost-effective strategies for novel electrode materials with 3D hierarchical microstructures and mechanical flexibility for lithium metal anodes.

Journal article

Liu X, Ouyang M, Orzech M, Niu Y, Tang W, Chen J, Naylor Marlow M, Puhan D, Zhao Y, Tan R, Brankin C, Haworth N, Zhao S, Wang H, Childs P, Margadonna S, Wagemaker M, Pan F, Brandon N, George C, Wu Bet al., 2020, In-situ fabrication of carbon-metal fabrics as freestanding electrodes for high-performance flexible energy storage devices, Energy Storage Materials, Vol: 30, Pages: 329-336, ISSN: 2405-8297

Hierarchical 1D carbon structures are attractive due to their mechanical, chemical and electrochemical properties however the synthesis of these materials can be costly and complicated. Here, through the combination of inexpensive acetylacetonate salts of Ni, Co and Fe with a solution of polyacrylonitrile (PAN), self-assembling carbon-metal fabrics (CMFs) containing unique 1D hierarchical structures can be created via easy and low-cost heat treatment without the need for costly catalyst deposition nor a dangerous hydrocarbon atmosphere. Microscopic and spectroscopic measurements show that the CMFs form through the decomposition and exsolution of metal nanoparticle domains which then catalyze the formation of carbon nanotubes through the decomposition by-products of the PAN. These weakly bound nanoparticles form structures similar to trichomes found in plants, with a combination of base-growth, tip-growth and peapod-like structures, where the metal domain exhibits a core(graphitic)-shell(disorder) carbon coating where the thickness is in-line with the metal-carbon binding energy. These CMFs were used as a cathode in a flexible zinc-air battery which exhibited superior performance to pure electrospun carbon fibers, with their metallic nanoparticle domains acting as bifunctional catalysts. This work therefore unlocks a potentially new category of composite metal-carbon fiber based structures for energy storage applications and beyond.

Journal article

Pan Y-W, Hua Y, Zhou S, He R, Zhang Y, Yang S, Liu X, Lian Y, Yan X, Wu Bet al., 2020, A computational multi-node electro-thermal model for large prismatic lithium-ion batteries, Journal of Power Sources, Vol: 459, ISSN: 0378-7753

During operation of large prismatic lithium-ion batteries, temperature heterogeneities are aggravated which affect the performance, lifetime and safety of the cells and packs. Therefore, an accurate model to predict the evolution of temperature profiles in a cell is essential for effective thermal management. In this paper, a pseudo 3D coupled multi-node electro-thermal model is presented for real-time prediction of the heterogeneous temperature field evolution on the surface and inside the battery. The model consists of two parts: a heat generation model based on a second-order equivalent-circuit model and a multi-node heat transfer model based on the battery geometry. Three types of nodes are adopted to describe the thermal characteristics of various components of the cell. Simulation results show that the proposed model has a great consistency with finite element method, and its computational cost is reduced by 90%. The validity of the coupled electrical and thermal model is also demonstrated experimentally for a 105 Ah prismatic cell applying wide ranges of temperature and SOC. The maximum error is less than 2 K throughout the cycles. The proposed model holds a great potential for online temperature estimation in advanced lithium-ion battery thermal management system design.

Journal article

Madabattula G, Wu B, Marinescu M, Offer Get al., 2020, Degradation diagnostics for Li4Ti5O12-based lithium ion capacitors: insights from a physics-based model, Journal of The Electrochemical Society, Vol: 167, ISSN: 0013-4651

Lithium ion capacitors are an important energy storage technology, providing the optimum combination of power, energy and cycle life for high power applications. However, there has been minimal work on understanding how they degrade and how this should influence their design. In this work, a 1D electrochemical model of a lithium ion capacitor with activated carbon (AC) as the positive electrode and lithium titanium oxide (LTO) as the negative electrode is used to simulate the consequences of different degradation mechanisms in order to explore how the capacity ratio of the two electrodes affects degradation. The model is used to identify and differentiate capacity loss due to loss of active material (LAM) in the lithiated and de-lithiated state and loss of lithium inventory (LLI). The model shows that, with lower capacity ratios (AC/LTO), LAM in the de-lithiated state cannot be identified as the excess LTO in the cell balances the capacity loss. Cells with balanced electrode capacity ratios are therefore necessary to differentiate LAM in lithiated and de-lithiated states and LLI from each other. We also propose in situ diagnostic techniques which will be useful to optimize a LIC's design. The model, built in COMSOL, is available online.

Journal article

Yang K, Jia L, Liu X, Wang Z, Wang Y, Li Y, Chen H, Wu B, Yang L, Pan Fet al., 2020, Revealing the anion intercalation behavior and surface evolution of graphite in dual-ion batteries via in situ AFM, Nano Research, Vol: 13, Pages: 412-418, ISSN: 1998-0124

Graphite as a positive electrode material of dual ion batteries (DIBs) has attracted tremendous attentions for its advantages including low lost, high working voltage and high energy density. However, very few literatures regarding to the real-time observation of anion intercalation behavior and surface evolution of graphite in DIBs have been reported. Herein, we use in situ atomic force microscope (AFM) to directly observe the intercalation/de-intercalation processes of PF6− in graphite in real time. First, by measuring the change in the distance between graphene layers during intercalation, we found that PF6− intercalates in one of every three graphite layers and the intercalation speed is measured to be 2 µm·min−1. Second, graphite will wrinkle and suffer structural damages at high voltages, along with severe electrolyte decomposition on the surface. These findings provide useful information for further optimizing the capacity and the stability of graphite anode in DIBs.

Journal article

Madabattula G, Wu B, Marinescu M, Offer Get al., 2020, How to design lithium ion capacitors: modelling, mass ratio ofelectrodes and pre-lithiation, Journal of The Electrochemical Society, Vol: 167, ISSN: 0013-4651

Lithium ion capacitors (LICs) store energy using double layer capacitance at the positive electrode and intercalation at the negative electrode. LICs offer the optimum power and energy density with longer cycle life for applications requiring short pulses of high power. However, the effect of electrode balancing and pre-lithiation on usable energy is rarely studied. In this work, a set of guidelines for optimum design of LICs with activated carbon (AC) as positive electrode and lithium titanium oxide (LTO) as negative electrode was proposed. A physics-based model has been developed and used to study the relationship between usable energy at different effective C rates and the mass ratio of the electrodes. The model was validated against experimental data from literature. The model was then extended to analyze the need for pre-lithiation of LTO. The limits for pre-lithiation in LTO and use of negative polarization of the AC electrode to improve the cell capacity have been analyzed using the model. Furthermore, the model was used to relate the electrolyte depletion effects to poorer power performance in a cell with higher mass ratio. The open-source model can be re-parameterised for other LIC electrode combinations, and should be of interest to cell designers.

Journal article

Ai W, Kraft L, Sturm J, Jossen A, Wu Bet al., 2020, Electrochemical thermal-mechanical modelling of stress inhomogeneity in lithium-ion pouch cells, Journal of The Electrochemical Society, Vol: 167, ISSN: 0013-4651

Whilst extensive research has been conducted on the effects of temperature in lithium-ion batteries, mechanical effects have not received as much attention despite their importance. In this work, the stress response in electrode particles is investigated through a pseudo-2D model with mechanically coupled diffusion physics. This model can predict the voltage, temperature and thickness change for a lithium cobalt oxide-graphite pouch cell agreeing well with experimental results. Simulations show that the stress level is overestimated by up to 50% using the standard pseudo-2D model (without stress enhanced diffusion), and stresses can accelerate the diffusion in solid phases and increase the discharge cell capacity by 5.4%. The evolution of stresses inside electrode particles and the stress inhomogeneity through the battery electrode have been illustrated. The stress level is determined by the gradients of lithium concentration, and large stresses are generated at the electrode-separator interface when high C-rates are applied, e.g. fast charging. The results can explain the experimental results of particle fragmentation close to the separator and provide novel insights to understand the local aging behaviors of battery cells and to inform improved battery control algorithms for longer lifetimes.

Journal article

Madabattula G, Wu B, Marinescu M, Offer Get al., 2019, 1D Electrochemical Model for Lithium Ion Capacitors in Comsol

Lithium ion capacitor is an electrochemical energy storage device with optimum energy density, power density and longer cycle life. A 1D-electrochemical model for activated carbon (AC)/ lithium titanium oxide (LTO) based lithium ion capacitor was built in COMSOL multiphyisics, v5.3a. The model was used to generate the data in an open-access paper: How to Design Lithium Ion Capacitor: Modelling, Mass Ratio of Electrodes and Pre-lithiation, Journal of The Electrochemical Society, 2020, 167. (http://jes.ecsdl.org/content/167/1/013527.abstract) The model can be used to optimize the mass ratio of electrodes and pre-lithiation level. It can be extended to study the capacity fade in the devices.

Software

Chen X, Liu X, Ouyang M, Chen J, Taiwo O, Xia Y, Childs P, Brandon N, Wu Bet al., 2019, Multi-metal 4D printing with a desktop electrochemical 3D printer, Scientific Reports, Vol: 9, ISSN: 2045-2322

4D printing has the potential to create complex 3D geometries which are able to react to environmental stimuli opening new design possibilities. However, the vast majority of 4D printing approaches use polymer based materials, which limits the operational temperature. Here, we present a novel multi-metal electrochemical 3D printer which is able to fabricate bimetallic geometries and through the selective deposition of different metals, temperature responsive behaviour can thus be programmed into the printed structure. The concept is demonstrated through a meniscus confined electrochemical 3D printing approach with a multi-print head design with nickel and copper used as exemplar systems but this is transferable to other deposition solutions. Improvements in deposition speed (34% (Cu)-85% (Ni)) are demonstrated with an electrospun nanofibre nib compared to a sponge based approach as the medium for providing hydrostatic back pressure to balance surface tension in order to form a electrolyte meniscus stable. Scanning electron microscopy, X-ray computed tomography and energy dispersive X-ray spectroscopy shows that bimetallic structures with a tightly bound interface can be created, however convex cross sections are created due to uneven current density. Analysis of the thermo-mechanical properties of the printed strips shows that mechanical deformations can be generated in Cu-Ni strips at temperatures up to 300 °C which is due to the thermal expansion coefficient mismatch generating internal stresses in the printed structures. Electrical conductivity measurements show that the bimetallic structures have a conductivity between those of nanocrystalline copper (5.41×106 S.m−1) and nickel (8.2×105 S.m-1). The potential of this novel low-cost multi-metal 3D printing approach is demonstrated with the thermal actuation of an electrical circuit and a range of self-assembling structures.

Journal article

Chen X, Liu X, Ouyang M, Childs P, Brandon N, Wu Bet al., 2019, Electrospun composite nanofibre supercapacitors enhanced with electrochemically 3D printed current collectors, Journal of Energy Storage, Vol: 26, Pages: 100993-100993, ISSN: 2352-152X

Carbonised electrospun nanofibres are attractive for supercapacitors due to their relatively high surface area, facile production routes and flexibility. With the addition of materials such as manganese oxide (MnO), the specific capacitance of the carbon nanofibres can be further improved through fast surface redox reactions, however this can reduce the electrical conductivity. In this work, electrochemical 3D printing is used as a novel means of improving electrical conductivity and the current collector-electrode interfacial resistance through the deposition of highly controlled layers of copper. Neat carbonised electrospun electrodes made with a 30 wt% manganese acetylacetonate (MnACAC) and polyacrylonitrile precursor solution have a hydrophobic nature preventing an even copper deposition. However, with an ethanol treatment, the nanofibre films can be made hydrophilic which enhances the copper deposition morphology to enable the formation of a percolating conductive network through the electrode. This has the impact of increasing electrode electronic conductivity by 360% from 10 S/m to 46 S/m and increasing specific capacitance 110% from 99 F/g to 208 F/g at 5 mV/s through increased utilisation of the pseudocapacitive active material. This novel approach thus provides a new route for performance enhancement of electrochemical devices using 3D printing, which opens new design possibilities.

Journal article

Liu X, George C, Wang H, Wu Bet al., 2019, Novel inorganic composite materials for lithium‐ion batteries, Encyclopedia of Inorganic and Bioinorganic Chemistry, Publisher: Wiley

Lithium‐ion batteries (LIBs) have revolutionized the way we interact with the world around us. This is in part due to their unrivaled energy density and stability relative to other energy storage chemistries such as lead‐acid, nickel–metal hydride, and nickel–cadmium batteries. Given the drive to reduce greenhouse gas emissions from road transport, LIBs have now transitioned from application in consumer electronics to be the most critical component for electric vehicles (EVs); however, improvements in energy and power density, cost reduction, and lifetime are still required. The key aspects of an LIB that define its performance are mainly the anode, cathode, and electrolyte, however development of the separator and current collectors are also key considerations. In the vast majority of commercially available LIBs, the anode consists mostly of graphite and the cathode mostly of layered transition metal oxides, with an organic electrolyte facilitating the lithium‐ion transport between the two electrodes. This article provides an overview of the state of the art in developing inorganic composite materials for LIBs and concludes by highlighting the current challenges as well as the potential opportunities in the field.

Book chapter

Tomaszewska A, Chu Z, Feng X, O'Kane S, Liu X, Chen J, Ji C, Endler E, Li R, Liu L, Li Y, Zheng S, Vetterlein S, Gao M, Du J, Parkes M, Ouyang M, Marinescu M, Offer G, Wu Bet al., 2019, Lithium-ion battery fast charging: A review, eTransportation, Vol: 1, Pages: 1-28, ISSN: 2590-1168

In the recent years, lithium-ion batteries have become the battery technology of choice for portable devices, electric vehicles and grid storage. While increasing numbers of car manufacturers are introducing electrified models into their offering, range anxiety and the length of time required to recharge the batteries are still a common concern. The high currents needed to accelerate the charging process have been known to reduce energy efficiency and cause accelerated capacity and power fade. Fast charging is a multiscale problem, therefore insights from atomic to system level are required to understand and improve fast charging performance. The present paper reviews the literature on the physical phenomena that limit battery charging speeds, the degradation mechanisms that commonly result from charging at high currents, and the approaches that have been proposed to address these issues. Special attention is paid to low temperature charging. Alternative fast charging protocols are presented and critically assessed. Safety implications are explored, including the potential influence of fast charging on thermal runaway characteristics. Finally, knowledge gaps are identified and recommendations are made for the direction of future research. The need to develop reliable in operando methods to detect lithium plating and mechanical degradation is highlighted. Robust model-based charging optimisation strategies are identified as key to enabling fast charging in all conditions. Thermal management strategies to both cool batteries during charging and preheat them in cold weather are acknowledged as critical, with a particular focus on techniques capable of achieving high speeds and good temperature homogeneities.

Journal article

Liu X, Ai W, Naylor Marlow M, Patel Y, Wu Bet al., 2019, The effect of cell-to-cell variations and thermal gradients on the performance and degradation of lithium-ion battery packs, Applied Energy, Vol: 248, Pages: 489-499, ISSN: 0306-2619

The performance of lithium-ion battery packs are often extrapolated from single cell performance however uneven currents in parallel strings due to cell-to-cell variations, thermal gradients and/or cell interconnects can reduce the overall performance of a large scale lithium-ion battery pack. In this work, we investigate the performance implications caused by these factors by simulating six parallel connected batteries based on a thermally coupled single particle model with the solid electrolyte interphase growth degradation mechanism modelled. Experimentally validated simulations show that cells closest to the load points of a pack experience higher currents than cells further away due to uneven overpotentials caused by the interconnects. When a cell with a four times greater internal impedance was placed in the location with the higher currents this actually helped to equalise the cell-to-cell current distribution, however if this was placed at a location furthest from the load point this would cause a ~6% reduction in accessible energy at 1.5 C. The influence of thermal gradients can further affect this current heterogeneity leading to accelerated aging. Simulations show that in all cases, cells degrade at different rates in a pack due to the uneven currents, with this being amplified by thermal gradients. In the presented work a 5.2% increase in degradation rate, from -7.71 mWh/cycle (isothermal) to - 8.11 mWh/cycle (non-isothermal) can be observed. Therefore, the insights from this paper highlight the highly coupled nature of battery pack performance and can inform designs for higher performance and longer lasting battery packs.

Journal article

Yin C, Liu X, Wei J, Tan R, Zhou J, Ouyang M, Wang H, Cooper SJ, Wu B, George C, Wang Qet al., “All-in-Gel” design for supercapacitors towards solid-state energy devices with thermal and mechanical compliance, Journal of Materials Chemistry A, Vol: 7, Pages: 8826-8831, ISSN: 2050-7488

“All-in-gel” supercapacitor is designed <italic>via</italic> ionogel composite electrolyte and Bucky gel electrodes. These flexible, conductive and shape-conformable gels represent a step change in the design of safe energy storage devices for wearable electronics, in particular those facing the increased demands of hazardous operational environments.

Journal article

Liu X, Taiwo O, Yin C, Ouyang M, Chowdhury R, Wang B, Wang H, Wu B, Brandon N, Wang Q, Cooper Set al., 2019, Aligned lonogel electrolytes for high‐temperature supercapacitors, Advanced Science, Vol: 6, Pages: 1-7, ISSN: 2198-3844

Ionogels are a new class of promising materials for use in all‐solid‐state energy storage devices in which they can function as an integrated separator and electrolyte. However, their performance is limited by the presence of a crosslinking polymer, which is needed to improve the mechanical properties, but compromises their ionic conductivity. Here, directional freezing is used followed by a solvent replacement method to prepare aligned nanocomposite ionogels which exhibit enhanced ionic conductivity, good mechanical strength, and thermal stability simultaneously. The aligned ionogel based supercapacitor achieves a 29% higher specific capacitance (176 F g−1 at 25 °C and 1 A g−1) than an equivalent nonaligned form. Notably, this thermally stable aligned ionogel has a high ionic conductivity of 22.1 mS cm−1 and achieves a high specific capacitance of 167 F g−1 at 10 A g−1 and 200 °C. Furthermore, the diffusion simulations conducted on 3D reconstructed tomography images are employed to explain the improved conductivity in the relevant direction of the aligned structure compared to the nonaligned. This work demonstrates the synthesis, analysis, and use of aligned ionogels as supercapacitor separators and electrolytes, representing a promising direction for the development of wearable electronics coupled with image based process and simulations.

Journal article

Song W, Liu X, Wu B, Brandon N, Shearing PR, Brett DJL, Xie F, Jason Riley Det al., 2019, Sn@C evolution from yolk-shell to core-shell in carbon nanofibers with suppressed degradation of lithium storage, Energy Storage Materials, Vol: 18, Pages: 229-237, ISSN: 2405-8297

Metallic Sn has high conductivity and high theoretical capacity for lithium storage but it suffers from severe volume change in lithiation/delithiation leading to capacity fade. Yolk-shell and core-shell Sn@C spheres interconnected by carbon nanofibers were synthesized by thermal vapor and thermal melting of electrospun nanofibers to improve the cycling stability. Sn particles in yolk-shell spheres undergo dynamic structure evolution during thermal melting to form core-shell spheres. The core-shell spheres linked along the carbon nanofibers show outstanding performance and are better than the yolk-shell system for lithium storage, with a high capacity retention of 91.8% after 1000 cycles at 1 A g-1. The superior structure of core-shell spheres interconnected by carbon nanofibers has facile electron conductivity and short lithium ion diffusion pathways through the carbon nanofibers and shells, and re-develops Sn@C structures with Sn clusters embedded into carbon matrix during electrochemical cycling, enabling the high performance.

Journal article

Deshagani S, Liu X, Wu B, Deepa Met al., 2019, Nickel cobaltite@Poly(3,4-ethylenedioxypyrrole) and carbon nanofiber interlayer based flexible supercapacitor, Nanoscale, Vol: 11, Pages: 2742-2756, ISSN: 2040-3364

Binder free flexible symmetric supercapacitors are developed with nickel cobaltite micro-flowers coated poly(3,4-ethylenedioxypyrrole) (NiCo2O4@PEDOP) hybrid electrodes. Free standing films of carbon nano-fibers (CNF), synthesized by electrospinning, were sandwiched between the NiCo2O4@PEDOP hybrid and the electrolyte coated separators on both sides of the cells. The CNF film conducts both ions and electrons, and confines the charge at the respective electrodes, to result in an improved specific capacitance (SC) and energy density compared to the analogous cell without the CNF interlayers. High SC of 1,775 F g-1 at a low current density of 0.96 A g-1 and a SC of 634 F g-1 achieved at a high current density of 38 A g-1 coupled with a SC retention of ~95% after 5,000 charge-discharge cycles in the NCO@PEDOP/CNF based symmetric supercapacitor, are performance attributes superior to that achieved with NCO and NCO/CNF based symmetric cells. The PEDOP coating serves as a highly conductive matrix for the NCO micro-flowers and also undergoes doping/de-doping during charge-discharge, thus amplifying the overall supercapacitor response, compared to the individual components. The CNF interlayers show reasonably high ion-diffusion coefficients for K+ and OH- propagation implying facile pathways available for movement of ions across the cross-section of the cell, and they also serve as ion reservoirs. The electrode morphologies remain unaffected by cycling, in the presence of the CNF interlayer. LED illumination and a largely unaltered charge storage response was achieved in a mutli-cell configuration, proving the potential for this approach in practical applications.

Journal article

Yufit V, Tariq F, Biton M, Brandon Net al., 2019, Operando visualisation and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries, Joule, Vol: 3, Pages: 485-502, ISSN: 2542-4351

Alternative battery technologies are required to meet growing energy demands and address the limitations of present technologies. As such, it is necessary to look beyond lithium-ion batteries. Zinc batteries enable high power density while being sourced from ubiquitous and cost-effective materials. This paper presents, for the first time known to the authors, multi-length scale tomography studies of failure mechanisms in zinc batteries with and without commercial microporous separators. In both cases, dendrites were grown, dissolved, and regrown, critically resulting in different morphology of dendritic layer formed on both the electrode and the separator. The growth of dendrites and their volume-specific areas were quantified using tomography and radiography data in unprecedented resolution. High-resolution ex situ analysis was employed to characterize single dendrites and dendritic deposits inside the separator. The findings provide unique insights into mechanisms of metal-battery failure effected by growing dendrites.

Journal article

Ouyang M, Bertei A, Cooper SJ, Wu Y, Liu X, Boldrin P, Kishimoto M, Wu B, Brandon NPet al., 2019, Design of fibre Ni/CGO anode and model interpretation, ECS Transactions, Vol: 91, Pages: 1721-1739, ISSN: 1938-6737

© The Electrochemical Society. A new structure of Ni/gadolinium-doped ceria (CGO) is prepared by a highly tuneable and facile combination of electrospinning and tape-casting method. The structure consists of a network made by continuous Ni fibres and filled in with CGO matrices. When used as the anode of solid oxide fuel cell (SOFC), though it has a lower triple phase boundary (TPB) density, it exhibits better performance compared with impregnated and cermet Ni/CGO with higher nickel loading. An algorithm is developed to determine the ceria-pore double phase boundary (DPB) density with different distance from nickel phase. Using the results, the relative electrochemical reaction rate on DPB and TPB of three different electrodes are calculated and proves that fibre-matrices structure has the morphology advantage of efficiently making use of all ceria-pore DPB. The relative contribution of DPB and TPB in anode reaction of SOFC is quantified in the first time and the importance of DPB is further stressed. This work provides new inspirations in material design of SOFC/SOEC and develops a novel strategy to evaluate the performance of electrodes quantitatively.

Journal article

Chen X, Liu X, Childs P, Brandon N, Wu Bet al., 2018, Design and fabrication of a low cost desktop electrochemical 3D printer, Pro-AM Conference in 2014, Pages: 395-400, ISSN: 2424-8967

Copyright © 2018 by Nanyang Technological University. Additive manufacturing (AM) (3D printing) is the process of creating 3D objects from digital models through the layer by layer deposition of materials. Electrochemical additive manufacturing (ECAM) is a relatively new technique which can create metallic components based depositing adherent layers of metal ions onto the surface of conductive substrate. In this paper, the design considerations for a meniscus confined ECAM approach is presented which demonstrates superior print speeds to equivalent works. This is achieved through the increase of the meniscus diameter to 400 \im which was achieved through the integration of a porous sponge into the print head to balance the hydraulic head of the electrolyte. Other piston based methods of controlling the electrolyte meniscus are discussed.

Conference paper

Liu X, Naylor Marlow M, Cooper S, Song B, Chen X, Brandon N, Wu Bet al., 2018, Flexible all-fiber electrospun supercapacitor, Journal of Power Sources, Vol: 384, Pages: 264-269, ISSN: 0378-7753

We present an all-fiber flexible supercapacitor with composite nanofiber electrodes made via electrospinning and an electrospun separator. With the addition of manganese acetylacetonate (MnACAC) to polyacrylonitrile (PAN) as a precursor for the electrospinning process and subsequent heat treatment, the performance of pure PAN supercapacitors was improved from 90 F.g-1 to 200 F.g-1 (2.5 mV.s-1) with possible mass loadings of MnACAC demonstrated as high as 40 wt%. X-ray diffraction measurements showed that after thermal treatment, the MnACAC was converted to MnO, meanwile, the thermal decomposition of MnACAC increased the graphitic degree of the carbonised PAN. Scanning electron microscopy and image processing showed that static electrospinning of pure PAN and PAN-Mn resulted in fiber diameters of 460 nm and 480 nm respectively after carbonisation. Further analysis showed that the fiber orientation exhibited a slight bias which was amplified with the addition of MnACAC. Use of focused ion beam scanning electron microscopy tomography also showed that MnO particles were evenly distributed through the fiber at low MnACAC concentrations, while at a 40 wt% loading the MnO particles were also visible on the surface. Comparison of the electrospun separators showed improved performance relative to a commercial Celgard separator (200 F.g-1 vs 141 F.g-1).

Journal article

Merla Y, Wu B, Yufit V, Martinez-Botas RF, Offer GJet al., 2018, An easy-to-parameterise physics-informed battery model and its application towards lithium-ion battery cell design, diagnosis, and degradation, Journal of Power Sources, Vol: 384, Pages: 66-79, ISSN: 0378-7753

Accurate diagnosis of lithium ion battery state-of-health (SOH) is of significant value for many applications, to improve performance, extend life and increase safety. However, in-situ or in-operando diagnosis of SOH often requires robust models. There are many models available however these often require expensive-to-measure ex-situ parameters and/or contain unmeasurable parameters that were fitted/assumed. In this work, we have developed a new empirically parameterised physics-informed equivalent circuit model. Its modular construction and low-cost parametrisation requirements allow end users to parameterise cells quickly and easily. The model is accurate to 19.6 mV for dynamic loads without any global fitting/optimisation, only that of the individual elements. The consequences of various degradation mechanisms are simulated, and the impact of a degraded cell on pack performance is explored, validated by comparison with experiment. Results show that an aged cell in a parallel pack does not have a noticeable effect on the available capacity of other cells in the pack. The model shows that cells perform better when electrodes are more porous towards the separator and have a uniform particle size distribution, validated by comparison with published data. The model is provided with this publication for readers to use.

Journal article

Cho JIS, Neville T, Trogadas P, Wu B, Brett D, Coppens MOet al., 2018, Nature-inspired flow-fields and water management for PEM fuel cells, Pages: 74-75

Copyright © American Institute of Chemical Engineers. All rights reserved. Flow-field design is crucial to polymer electrolyte membrane fuel cell (PEMFC) performance, since non-uniform transport of species to and from the membrane electrode assembly (MEA) results in significant power losses[1]. The long channels of conventional serpentine flow-fields cause large pressure drops between inlets and outlets, thus large parasitic energy losses and low fuel cell performance[2]. Here, a lung-inspired approach is used to design flow fields guided by the structure of a lung. The fractal geometry of the human lung has been shown to ensure uniform distribution of air from a single outlet (trachea) to multiple outlets (alveoli). Furthermore, the human lung transitions between two flow regimes: 14-16 upper generations of branches dominated by convection, and 7-9 lower generations of space-filling acini dominated by diffusion[3,4]. The upper generations of branches are designed to slow down the gas flow to a rate compatible with the rate in the diffusional regime (Pé ~ 1)[5], resulting in uniform distribution of entropy production in both regimes[3,4]. By employing a three-dimensional (3D) fractal structure as flow field inlet channel, we aim to yield similar benefits from replicating these characteristics of the human lung. The fractal pattern consists of repeating “H” shapes where daughter “H's” are located at the four tips of the parent “H”. The fractal geometry obeys Murray's law, much like the human lung, hereby leading to minimal mechanical energy losses. Furthermore, the three-dimensional branching structure provide uniform local conditions on the surface of the catalyst layer as only the outlets of the fractal inlet channel are exposed to the MEA. Numerical simulations were conducted to determine the number of generations required to achieve uniform reactant distribution and minimal entropy production. The results reveal tha

Conference paper

Trogadas P, Cho JIS, Neville TP, Marquis J, Wu B, Brett DJL, Coppens MOet al., 2017, A lung-inspired approach to scalable and robust fuel cell design, Energy and Environmental Science, Vol: 11, Pages: 136-143, ISSN: 1754-5692

A lung-inspired approach is employed to overcome reactant homogeneity issues in polymer electrolyte fuel cells. The fractal geometry of the lung is used as the model to design flow-fields of different branching generations, resulting in uniform reactant distribution across the electrodes and minimum entropy production of the whole system. 3D printed, lung-inspired flow field based PEFCs with N = 4 generations outperform the conventional serpentine flow field designs at 50% and 75% RH, exhibiting a 20% and 30% increase in performance (at current densities higher than 0.8 A cm2) and maximum power density, respectively. In terms of pressure drop, fractal flow-fields with N = 3 and 4 generations demonstrate 75% and 50% lower values than conventional serpentine flow-field design for all RH tested, reducing the power requirements for pressurization and recirculation of the reactants. The positive effect of uniform reactant distribution is pronounced under extended current-hold measurements, where lung-inspired flow field based PEFCs with N = 4 generations exhibit the lowest voltage decay (B5 mV h1). The enhanced fuel cell performance and low pressure drop values of fractal flow field design are preserved at large scale(25 cm2), in which the excessive pressure drop of a large-scale serpentine flow field renders its use prohibitive.

Journal article

Wu B, Myant C, Weider SZ, 2017, The value of additive manufacturing: future opportunities, Briefing paper, 2

The global additive manufacturing (AM) – 3D printing – industr y was valued at $6 billion for 2016, and is predicted to grow to more than $26 billion by 20221. This rapid growth has arisen mainly because of the evolution of AM from primarily a prototyping tool to a useful end-product fabrication method in some high-value manufacturing applications (e.g., in the aerospace, medical device and automotive industries).• AM has the potential to offer many economic, technical and environmental advantages over traditional manufacturing approaches, including decreased production costs and times, the possibility of flexible and bespoke production, as well as a reduction in energy usage and waste. To realise these benefits, however, several barriers – across the entire AM process chain – need to be overcome. For example, improved design software, faster printing technology, increased automation and better industry standards are required.• To realise a more-efficient and more-profitable industr y, ‘game-changing’ AM research breakthroughs are thus required. Involving more researchers – from a wide array of scientific and engineering backgrounds – will be beneficial, as will a closer working relationship between academia and industr y.• The concept of molecular science and engineering2 – melding a deep understanding of molecular science with an engineering mind-set – provides an excellent framework for the ‘cross pollination’ of research ideas. In the pursuit of solving some of the biggest needs in AM, scientists and engineers – from a range of disciplines – can be brought together to communicate and collaborate at all stages of the AM research-to-final-product chain. In this way, costly late-stage changes can be avoided and the route to final, functional end-use products can be rapidly optimised. In addition, a new generation of scientists and engineers can be trained in a transdi

Report

Chen X, Liu X, Childs P, Brandon N, Wu Bet al., 2017, A low cost desktop electrochemical metal 3D printer, Advanced Materials Technologies, Vol: 2, ISSN: 2365-709X

Additive manufacturing (AM), or 3D printing as it is more commonly known, is the process of creating 3D objects from digital models through the sequential deposition of material in layers. Electrochemical 3D printing is a relatively new form of AM that creates metallic structures through electrochemical reduction of metal ions from solutions onto conductive substrates. The advantage of this process is that a wide range of materials and alloys can be deposited under ambient conditions without thermal damage and more importantly at low cost, as this does not require expensive laser optics or inert gas environments. Other advantages include the fact that this process can be both additive and subtractive through reversal of potential allowing for recycling of components through electrochemical dissolution. However, one main limitation of this technology is speed. Here, a novel electrochemical 3D printer design is proposed using a meniscus confinement approach which demonstrates deposition rates three orders of magnitude higher than equivalent systems due to improved mass transport characteristics afforded through a mechanical electrolyte entrainment mechanism. Printed copper structures exhibit a polycrystalline nature, with decreasing the grain size as the potential is increased resulting in a higher Vickers hardness and electronic resistivity.

Journal article

Huang M, Finlayson E, Liu H, Stover J, Xie X, Wu Bet al., The current and future prospects for vanadium flow batteries in China, International Flow Battery Forum

Conference paper

Wu B, Offer G, 2017, Environmental impact of hybrid and electric vehicles, Environmental Impacts of Road Vehicles : Past, Present and Future, Editors: Harrison, Hester, Publisher: Royal Society of Chemistry

Hybrid and electric vehicles play a critical role in reducing global greenhouse gas emissions, with transport estimated to contribute to 14% of the 49 GtCO2eq produced annually. Analysis of only the conversion efficiency of powertrain technologies can be misleading, with pure battery electric and hybrid vehicles reporting average efficiencies of 92% and 35% in comparison with 21% for internal combustion engine vehicles. A fairer comparison would be to consider the well-to-wheel efficiency, which reduces the numbers to 21–67%, 25% and 12%, respectively. The large variation in well-to-wheel efficiency of pure battery electric vehicles highlights the importance of renewable energy generation in order to achieve true environmental benefits. When calculating the energy return on investment of the various technologies based on the current energy generation mix, hybrid vehicles show the greatest environmental benefits, although this would change if electricity was made with high amounts of renewables. In an extreme scenario with heavy coal generation, the CO2eq return on investment can actually be negative for pure electric vehicles, highlighting the importance of renewable energy generation further. The energy impact of production is generally small (∼6% of lifetime energy) and, similarly, recycling is of a comparable magnitude, but it is less well studied.

Book chapter

Gupta G, Wu B, Mylius S, Offer GJet al., 2016, A systematic study on the use of short circuiting for the improvement of proton exchange membrane fuel cell performance, International Journal of Hydrogen Energy, Vol: 42, Pages: 4320-4327, ISSN: 1879-3487

Proton exchange membrane fuel cells suffer from reversible performance loss during operation caused by the oxidation of the Pt catalyst which in turn reduces the electrochemically active surface area. Many fuel cell manufacturers recommend using short circuiting during the operation of the fuel cell to improve the performance of the cells over time. However, there is lack of understanding on how it improves the performance as wellas on how to optimise the short circuiting strategy for different fuel cell systems. We present a simple procedure to develop an optimised short circuiting strategy by maximising the cumulative average power density gain and minimising the time required to recover the energy loss during short circuiting. We obtained average voltage improvement from 10 to 12% at different current densities for a commercial H-100 system and our short circuiting strategy showed ~2% voltage improvement in comparison to a commercial strategy. We also demonstrated that the minimum short circuiting time is a function of double layer capacitance by the use of electrochemical impedance spectroscopy.

Journal article

Liu X, Jervis R, Maher RC, Villar Garcia I, Naylor Marlow M, Shearing P, Ouyang M, Cohen L, Brandon N, Wu Bet al., 2016, 3D-Printed Structural Pseudocapacitors, Advanced Materials Technologies, Vol: 1, ISSN: 2365-709X

Direct metal laser sintering is used to create 3D hierarchical porous metallic scaffolds which are then functionalized with a co-electrodeposition of MnO2, Mn2O3, and doped conducting polymer. This approach of functionalizing metal 3D printed scaffolds thus opens new possibilities for structural energy storage devices with enhanced performance and lifetime characteristics.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00469102&limit=30&person=true