Imperial College London

Dr Billy Wu

Faculty of EngineeringDyson School of Design Engineering

Lecturer
 
 
 
//

Contact

 

+44 (0)20 7594 6385billy.wu Website

 
 
//

Location

 

ObservatorySouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

29 results found

Chen X, Liu X, Childs P, Brandon N, Wu Bet al., 2017, A Low Cost Desktop Electrochemical Metal 3D Printer, ADVANCED MATERIALS TECHNOLOGIES, Vol: 2, ISSN: 2365-709X

JOURNAL ARTICLE

Gupta G, Wu B, Mylius S, Offer GJet al., 2017, A systematic study on the use of short circuiting for the improvement of proton exchange membrane fuel cell performance, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, Vol: 42, Pages: 4320-4327, ISSN: 0360-3199

JOURNAL ARTICLE

Liu X, Wu B, Brandon N, Wang Qet al., 2017, Tough Ionogel-in-Mask Hybrid Gel Electrolytes in Supercapacitors with Durable Pressure and Thermal Tolerances, ENERGY TECHNOLOGY, Vol: 5, Pages: 220-224, ISSN: 2194-4288

JOURNAL ARTICLE

Trogadas P, Cho JIS, Neville TP, Marquis J, Wu B, Brett DJL, Coppens M-Oet al., 2017, A lung-inspired approach to scalable and robust fuel cell design, Energy Environ. Sci., ISSN: 1754-5692

JOURNAL ARTICLE

Wu B, Myant C, Weider SZ, 2017, The value of additive manufacturing: future opportunities, Briefing paper, 2

The global additive manufacturing (AM) – 3D printing – industr y was valued at $6 billion for 2016, and is predicted to grow to more than $26 billion by 20221. This rapid growth has arisen mainly because of the evolution of AM from primarily a prototyping tool to a useful end-product fabrication method in some high-value manufacturing applications (e.g., in the aerospace, medical device and automotive industries).• AM has the potential to offer many economic, technical and environmental advantages over traditional manufacturing approaches, including decreased production costs and times, the possibility of flexible and bespoke production, as well as a reduction in energy usage and waste. To realise these benefits, however, several barriers – across the entire AM process chain – need to be overcome. For example, improved design software, faster printing technology, increased automation and better industry standards are required.• To realise a more-efficient and more-profitable industr y, ‘game-changing’ AM research breakthroughs are thus required. Involving more researchers – from a wide array of scientific and engineering backgrounds – will be beneficial, as will a closer working relationship between academia and industr y.• The concept of molecular science and engineering2 – melding a deep understanding of molecular science with an engineering mind-set – provides an excellent framework for the ‘cross pollination’ of research ideas. In the pursuit of solving some of the biggest needs in AM, scientists and engineers – from a range of disciplines – can be brought together to communicate and collaborate at all stages of the AM research-to-final-product chain. In this way, costly late-stage changes can be avoided and the route to final, functional end-use products can be rapidly optimised. In addition, a new generation of scientists and engineers can be trained in a transdi

REPORT

Wu B, Offer G, 2017, Environmental impact of hybrid and electric vehicles, Environmental Impacts of Road Vehicles : Past, Present and Future, Editors: Harrison, Hester, Publisher: Royal Society of Chemistry

Hybrid and electric vehicles play a critical role in reducing global greenhouse gas emissions, with transport estimated to contribute to 14% of the 49 GtCO2eq produced annually. Analysis of only the conversion efficiency of powertrain technologies can be misleading, with pure battery electric and hybrid vehicles reporting average efficiencies of 92% and 35% in comparison with 21% for internal combustion engine vehicles. A fairer comparison would be to consider the well-to-wheel efficiency, which reduces the numbers to 21–67%, 25% and 12%, respectively. The large variation in well-to-wheel efficiency of pure battery electric vehicles highlights the importance of renewable energy generation in order to achieve true environmental benefits. When calculating the energy return on investment of the various technologies based on the current energy generation mix, hybrid vehicles show the greatest environmental benefits, although this would change if electricity was made with high amounts of renewables. In an extreme scenario with heavy coal generation, the CO2eq return on investment can actually be negative for pure electric vehicles, highlighting the importance of renewable energy generation further. The energy impact of production is generally small (∼6% of lifetime energy) and, similarly, recycling is of a comparable magnitude, but it is less well studied.

BOOK CHAPTER

Ibrahim KA, Wu B, Brandon NP, 2016, Electrical conductivity and porosity in stainless steel 316L scaffolds for electrochemical devices fabricated using selective laser sintering, MATERIALS & DESIGN, Vol: 106, Pages: 51-59, ISSN: 0264-1275

JOURNAL ARTICLE

Li J, wu BILLY, Myant CONNOR, 2016, The Current Landscape for Additive Manufacturing Research

REPORT

Liu X, Jervis R, Maher RC, Villar-Garcia IJ, Naylor-Marlow M, Shearing PR, Ouyang M, Cohen L, Brandon NP, Wu Bet al., 2016, 3D-Printed Structural Pseudocapacitors, ADVANCED MATERIALS TECHNOLOGIES, Vol: 1, ISSN: 2365-709X

JOURNAL ARTICLE

Merla Y, Wu B, Yufit V, Brandon NP, Martinez-Botas RF, Offer GJet al., 2016, Novel application of differential thermal voltammetry as an in-depth state-of-health diagnosis method for lithium-ion batteries, JOURNAL OF POWER SOURCES, Vol: 307, Pages: 308-319, ISSN: 0378-7753

JOURNAL ARTICLE

Merla Y, Wu B, Yufit V, Brandon NP, Martinez-Botas RF, Offer GJet al., 2016, Extending battery life: A low-cost practical diagnostic technique for lithium-ion batteries, JOURNAL OF POWER SOURCES, Vol: 331, Pages: 224-231, ISSN: 0378-7753

JOURNAL ARTICLE

Parkes MA, Chen T, Wu B, Yufit V, Offer GJet al., 2016, "Can" You Really Make a Battery Out of That?, JOURNAL OF CHEMICAL EDUCATION, Vol: 93, Pages: 681-686, ISSN: 0021-9584

JOURNAL ARTICLE

Patsios C, Wu B, Chatzinikolaou E, Rogers DJ, Wade N, Brandon NP, Taylor Pet al., 2016, An integrated approach for the analysis and control of grid connected energy storage systems, JOURNAL OF ENERGY STORAGE, Vol: 5, Pages: 48-61, ISSN: 2352-152X

JOURNAL ARTICLE

Wu B, Parkes MA, de Benedetti L, Marquis AJ, Offer GJ, Brandon NPet al., 2016, Real-time monitoring of proton exchange membrane fuel cell stack failure, JOURNAL OF APPLIED ELECTROCHEMISTRY, Vol: 46, Pages: 1157-1162, ISSN: 0021-891X

JOURNAL ARTICLE

Dewage HH, Wu B, Tsoi A, Yufit V, Offer G, Brandon Net al., 2015, A novel regenerative hydrogen cerium fuel cell for energy storage applications, JOURNAL OF MATERIALS CHEMISTRY A, Vol: 3, Pages: 9446-9450, ISSN: 2050-7488

JOURNAL ARTICLE

Lomberg M, Boldrin P, Tariq F, Offer G, Wu B, Brandon NPet al., 2015, Additive manufacturing for solid oxide cell electrode fabrication, Pages: 2119-2127, ISSN: 1938-5862

© The Electrochemical Society. Additive manufacturing can potentially offer a highly-defined electrode microstructure, as well as fast and reproducible electrode fabrication. Selective laser sintering is an additive manufacturing technique in which three-dimensional structures are created by bonding subsequent layers of powder using a laser. Although selective laser sintering can be applied to a wide range of materials, including metals and ceramics, the scientific and technical aspects of the manufacturing parameters and their impact on microstructural evolution during the process are not well understood. In the present study, a novel approach for electrode fabrication using selective laser sintering was evaluated by conducting a proof of concept study. A Ni-patterned fuel electrode was laser sintered on an yttria-stabilized zirconia substrate. The optimization process of laser parameters (laser sintering rate and laser power) and the electrochemical results of a full cell with a laser sintered electrode are presented. The challenges and prospects of using selective laser sintering for solid oxide cell fabrication are discussed.

CONFERENCE PAPER

Wu B, Brandon NP, Yufit V, Tariq Fet al., 2015, HYBRID ELECTROCHEMICAL ENERGY DEVICE, WO/2015/150784

The present invention generally relates to the field of devices which are capable of storing and delivering electricity. In particular, the invention relates to a hybrid redox flow battery (HyRFB) capable of operating in a power delivery mode in which it generates electrical power by the reaction of electrochemically active species at a first and second electrode and in an energy storage mode in which it consumes electrical power to generate at least one electrochemically active species, the HyRFB comprising: • a reversible first electrode in a first electrode compartment containing a first aqueous electrolyte, • a reversible second electrode in a second electrode compartment containing a second aqueous electrolyte; and • a conduit arrangement configured, in said power delivery mode, for carrying electrochemically active species to the first electrode and, in an energy storage mode, for carrying generated electrochemically active species away from the first electrode; wherein the second electrode comprises a material that is capable of reversibly taking up and releasing alkali metal ions or alkaline earth metal ions during the said modes of operation, and wherein the second electrolyte comprises the alkali metal ions or the alkaline earth metal ions.

PATENT

Wu B, Yufit V, Merla Y, Martinez-Botas RF, Brandon NP, Offer GJet al., 2015, Differential thermal voltammetry for tracking of degradation in lithium-ion batteries, Journal of Power Sources, Vol: 273, Pages: 495-501, ISSN: 1873-2755

Monitoring of lithium-ion batteries is of critical importance in electric vehicle applications in order to manage the operational condition of the cells. Measurements on a vehicle often involve current, voltage and temperature which enable in-situ diagnostic techniques. This paper presents a novel diagnostic technique, termed differential thermal voltammetry, which is capable of monitoring the state of the battery using voltage and temperature measurements in galvanostatic operating modes. This tracks battery degradation through phase transitions, and the resulting entropic heat, occurring in the electrodes. Experiments to monitor battery degradation using the new technique are compared with a pseudo-2D cell model. Results show that the differential thermal voltammetry technique provides information comparable to that of slow rate cyclic voltammetry at shorter timescale and with load conditions easier to replicate in a vehicle.

JOURNAL ARTICLE

Tariq F, Yufit V, Eastwood DS, Merla Y, Biton M, Wu B, Chen Z, Freedman K, Offer G, Peled E, Lee PD, Golodnitsky D, Brandon Net al., 2014, In-Operando X-ray Tomography Study of Lithiation Induced Delamination of Si Based Anodes for Lithium-Ion Batteries, ECS ELECTROCHEMISTRY LETTERS, Vol: 3, Pages: A76-A78, ISSN: 2162-8726

JOURNAL ARTICLE

Troxler Y, Wu B, Marinescu M, Yufit V, Patel Y, Marquis AJ, Brandon NP, Offer GJet al., 2014, The effect of thermal gradients on the performance of lithium-ion batteries, JOURNAL OF POWER SOURCES, Vol: 247, Pages: 1018-1025, ISSN: 0378-7753

JOURNAL ARTICLE

Wu B, Brandon NP, Yufit V, Offer GJet al., 2014, A segmented fuel cell-battery passive hybrid system, WO/2014/195736

An apparatus for supplying electrical energy to a varying load is disclosed. The apparatus comprises fuel cells and energy storage devices. A fuel cell subset comprises one or a plurality of series-connected ones of the fuel cells, having a first no-load open- circuit potential thereacross and is connected in parallel with an energy storage device subset comprising one or a plurality of series-connected ones of the energy storage devices, having a second no-load open-circuit potential thereacross, to form a unit. The unit cell is connected in series or parallel with at least one other unit cell. The fuel cells in the unit cell and the at least one other unit cell are fuel cells of the same fuel cell stack. The arrangement is such that first no-load open-circuit potential and the second no-load open circuit potential are substantially balanced.

PATENT

Wu B, Parkes MA, Yufit V, De Benedetti L, Veismann S, Wirsching C, Vesper F, Martinez-Botas RF, Marquis AJ, Offer GJ, Brandon NPet al., 2014, Design and testing of a 9.5 kWe proton exchange membrane fuel cell-supercapacitor passive hybrid system, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, Vol: 39, Pages: 7885-7896, ISSN: 0360-3199

JOURNAL ARTICLE

Marinescu M, Wu B, Von Srbik M, Yufit V, Offer GJet al., 2013, The effect of thermal gradients on the performance of battery packs in automotive applications, IET Conference Publications, Vol: 2013

Thermal gradients arising inside a battery pack for automotive applications are calculated for 200 A discharge via a multiparticle thermal-electrochemical coupled high fidelity model for a 12P7S 4.8 Ah cell pack. The effect of such gradients at the cell level are studied in a first approximation under a corresponding discharge at 15 A, by discretising the cell into units at fixed temperatures throughout the discharge. The immediate time evolution of load distribution through the various parts of the cell shows a complex behaviour, dependent on parameters such as temperatures, state of charge and load characteristics.

JOURNAL ARTICLE

Wu B, Yufit V, Campbell J, Offer GJ, Martinez-Botas RF, Brandon NPet al., 2013, Simulated and experimental validation of a fuel cell-supercapacitor passive hybrid system for electric vehicles, IET Conference Publications, Vol: 2013

The concept of a fuel cell-supercapacitor hybrid system involves the direct coupling of the two devices to achieve the same benefits of hybridisation but without the need for costly DCDC converters. Using an experimentally validated steady state fuel cell model and a transmission line based supercapacitor model, it has been shown that the passive hybridisation allows for efficiency gains of approximately 16% compared to a pure fuel cell system. Under load, the supercapacitors meets the peak power requirement due to their lower impedance giving the FC time to ramp up. Under no load conditions, the fuel cell gradually charges the supercapacitors back to the steady state thermodynamic equilibrium potential. A fast fourier transform analysis of the respective loads under an automotive drive cycle showed that the supercapacitors act as a low pass filter, reducing the magnitude of load oscillations from the fuel cell. This therefore addresses two of the main modes of fuel cell degradation in automotive applications: rapid power cycling and no load idling.

JOURNAL ARTICLE

Wu B, Yufit V, Marinescu M, Offer GJ, Martinez-Botas RF, Brandon NPet al., 2013, Coupled thermal-electrochemical modelling of uneven heat generation in lithium-ion battery packs, JOURNAL OF POWER SOURCES, Vol: 243, Pages: 544-554, ISSN: 0378-7753

JOURNAL ARTICLE

Offer GJ, Yufit V, Howey DA, Wu B, Brandon NPet al., 2012, Module design and fault diagnosis in electric vehicle batteries, JOURNAL OF POWER SOURCES, Vol: 206, Pages: 383-392, ISSN: 0378-7753

JOURNAL ARTICLE

Wu B, Matian M, Offer GJ, 2012, Hydrogen PEMFC system for automotive applications, International Journal of Low-Carbon Technologies, Vol: 7, Pages: 28-37, ISSN: 1748-1317

A balance of plant (BOP) system for a 9.5-kWe Nedstack P9.5-75 low-temperature proton exchange membrane fuel cell (FC) stack was tested up to a power of 2 kWe. The system has been designed to act as a range extender for a series hybrid electric vehicle driven under urban duty cycles. Vehicle simulations have estimated that an average gross power requirement of 4 kWe is needed from the FC, whilst simulations of the FC stack and BOP components have allowed for characterisation of transient behaviour and performance degradation. © The Author 2012. Published by Oxford University Press. All rights reserved.

JOURNAL ARTICLE

Wu B, Offer GJ, Yufit V, Howey DA, Brandon NPet al., 2012, Fault analysis in battery module design for electric and hybrid vehicles

In this paper systems integration issues, such as electrical and thermal design and management of full battery packs - often containing hundreds of cells - are discussed. The design and construction of a 9 kWh battery pack for a motorsports application is used as an example. The pack contained 504 lithium cells arranged into 2 sidepods, each containing 3 modules, with each module in a 12P7S configuration. This paper focuses on describing problems related to cells being connected in parallel, known as massively parallel packs. We also demonstrate how a full vehicle test can be used to identify malfunctioning strings of cells for further investigation. It is shown that normal inter-cell contact resistances can cause currents to flow unevenly within the pack, leading to cells being unequally worked. This is supported by a Matlab/Simulink model of one battery module, including contact resistances, which was able to reproduce the results that were seen in experimental tests. Over time the unequal current flowing through cells can lead to significant differences in cells' state of charge and open circuit voltages, large currents flowing between cells even when the load is disconnected, and ultimately, some cells discharging and aging more quickly than others and jeopardising the energy storage capacity and lifetime of the entire pack.

CONFERENCE PAPER

Huang M, Finlayson E, Liu H, Stover J, Xie X, Wu Bet al., The current and future prospects for vanadium flow batteries in China, International Flow Battery Forum

CONFERENCE PAPER

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00469102&limit=30&person=true