Imperial College London

Dr Charlotte Dean

Faculty of MedicineNational Heart & Lung Institute

Senior Lecturer
 
 
 
//

Contact

 

+44 (0)20 7594 3174c.dean

 
 
//

Location

 

360Sir Alexander Fleming BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

42 results found

Dean C, Cheong SS, Hind M, Griffiths M, Akram K, Kim S, Metellan C, Gaboriau D, Del Rio Hernandez Aet al., 2020, The planar polarity component Vangl2 is a key regulator of mechanosignaling, Frontiers in Cell and Developmental Biology, ISSN: 2296-634X

Journal article

Portas L, Pereira M, Shaheen SO, Wyss AB, London SJ, Burney PGJ, Hind M, Dean CH, Minelli Cet al., 2020, Lung development genes and adult lung function, American Journal of Respiratory and Critical Care Medicine, Vol: 202, Pages: 853-865, ISSN: 1073-449X

RATIONALE: Poor lung health in adult life may occur partly through suboptimal growth and development, as suggested by epidemiological evidence pointing to early life risk factors. OBJECTIVES: To systematically investigate the effects of lung development genes on adult lung function. METHODS: Using UK Biobank data, we tested the association of 391 genes known to influence lung development with FVC and FEV1/FVC. We split the dataset into two random subsets of 207,616 and 138,411 individuals, using the larger to select the most promising signals and the smaller for replication. MEASUREMENTS AND MAIN RESULTS: We identified 55 genes, of which 36 (16 for FVC; 19 for FEV1/FVC; 1 for both) had not been identified in the largest, most recent genome-wide study of lung function. Most of these 36 signals were intronic variants; expression data from blood and lung tissue showed that the majority affect the expression of the genes they lie within. Further testing of 34 of these 36 signals in the CHARGE and SpiroMeta consortia showed that 16 replicated after Bonferroni correction and another 12 at nominal significance level. 53 of the 55 genes fell into four biological categories whose function is to regulate organ size and cell integrity (growth factors; transcriptional regulators; cell-cell adhesion; extra-cellular matrix), suggesting that these specific processes are important for adult lung health. CONCLUSIONS: Our study demonstrates the importance of lung development genes in regulating adult lung function and influencing both restrictive and obstructive patterns. Further investigation of these developmental pathways could lead to druggable targets.

Journal article

Dean C, Taylor B, Rice A, Nicholson J, Hind Met al., 2020, Mechanism of lung development in the aetiology of adult congenital pulmonary airway malformations, Thorax, ISSN: 0040-6376

Journal article

Rao-Bhatia A, Zhu M, Yin W-C, Coquenlorge S, Zhang X, Woo J, Sun Y, Dean CH, Liu A, Hui C-C, Shivdasani RA, McNeill H, Hopyan S, Kim T-Het al., 2020, Hedgehog-activated fat4 and PCP pathways mediate mesenchymal cell clustering and villus formation in gut development, Developmental Cell, Vol: 52, Pages: 647-658.e6, ISSN: 1534-5807

During development, intestinal epithelia undergo dramatic morphogenesis mediated by mesenchymal signaling to form villi, which are required for efficient nutrient absorption and host defense. Although both smooth-muscle-induced physical forces and mesenchymal cell clustering beneath emerging villi are implicated in epithelial folding, the underlying cellular mechanisms are unclear. Hedgehog (Hh) signaling can mediate both processes. We therefore analyzed its direct targetome and revealed GLI2 transcriptional activation of atypical cadherin and planar cell polarity (PCP) genes. By examining Fat4 and Dchs1 knockout mice, we demonstrate their critical roles in villus formation. Analyses of PCP-mutant mice and genetic interaction studies show that the Fat4-Dchs1 axis acts in parallel to the core-Vangl2 PCP axis to control mesenchymal cell clustering. Moreover, live light-sheet fluorescence microscopy and cultured PDGFRα+ cells reveal a requirement for PCP in their oriented cell migration guided by WNT5A. Therefore, mesenchymal PCP induced by Hh signaling drives cell clustering and subsequent epithelial remodeling.

Journal article

Wilson DH, Jarman EJ, Mellin RP, Wilson ML, Waddell SH, Tsokkou P, Younger NT, Raven A, Bhalla SR, Noll ATR, Damink SWO, Schaap FG, Chen P, Bates DO, Banales JM, Dean CH, Henderson DJ, Sansom OJ, Kendall TJ, Boulter Let al., 2020, Non-canonical Wnt signalling regulates scarring in biliary disease via the planar cell polarity receptors, NATURE COMMUNICATIONS, Vol: 11, ISSN: 2041-1723

Journal article

Akram K, Yates L, Mongey R, Rothery S, Gaboriau D, Sanderson J, Hind M, Griffiths M, Dean Cet al., 2019, Time-lapse imaging of alveologenesis in mouse precision-cut lung slices, Bio-protocol, Vol: 9, ISSN: 2331-8325

Alveoli are the gas-exchange units of lung. The process of alveolar development,alveologenesis, is regulated by a complex network of signaling pathways that act on various cell typesincluding alveolar type I and II epithelial cells, fibroblasts and the vascular endothelium. Dysregulatedalveologenesis results in bronchopulmonary dysplasia in neonates and in adults, disrupted alveolarregeneration is associated with chronic lung diseases including COPD and pulmonary fibrosis.Therefore, visualizing alveologenesis is critical to understand lung homeostasis and for thedevelopment of effective therapies for incurable lung diseases. We have developed a technique tovisualize alveologenesis in real-time using a combination of widefield microscopy and imagedeconvolution of precision-cut lung slices. Here, we describe this live imaging technique in step-by-stepdetail. This time-lapse imaging technique can be used to capture the dynamics of individual cells withintissue slices over a long time period (up to 16 h), with minimal loss of fluorescence or cell toxicity.

Journal article

Ng-Blichfeldt J-P, Gosens R, Dean C, Griffiths M, Hind Met al., 2019, Regenerative pharmacology for COPD: breathing new life into old lungs, Thorax, Vol: 74, Pages: 890-897, ISSN: 1468-3296

Chronic obstructive pulmonary disease (COPD) is a major global health concern with few effective treatments. Widespread destruction of alveolar tissue contributes to impaired gas exchange in severe COPD, and recent radiological evidence suggests that destruction of small airways is a major contributor to increased peripheral airway resistance in disease. This important finding might in part explain the failure of conventional anti-inflammatory treatments to restore lung function even in patients with mild disease. There is a clear need for alternative pharmacological strategies for patients with COPD/emphysema. Proposed regenerative strategies such as cell therapy and tissue engineering are hampered by poor availability of exogenous stem cells, discouraging trial results, and risks and cost associated with surgery. An alternative therapeutic approach is augmentation of lung regeneration and/or repair by biologically active factors, which have potential to be employed on a large scale. In favour of this strategy, the healthy adult lung is known to possess a remarkable endogenous regenerative capacity. Numerous preclinical studies have shown induction of regeneration in animal models of COPD/emphysema. Here, we argue that given the widespread and irreversible nature of COPD, serious consideration of regenerative pharmacology is necessary. However, for this approach to be feasible, a better understanding of the cell-specific molecular control of regeneration, the regenerative potential of the human lung and regenerative competencies of patients with COPD are required.

Journal article

Dean C, Cheong SS, 2019, On the move: the commander IL-4 leads the cell army in collective migration, American Journal of Respiratory Cell and Molecular Biology, Vol: 60, Pages: 377-378, ISSN: 1044-1549

Journal article

Akram K, Yates L, Mongey R, Rothery S, Gaboriau D, Sanderson J, Hind M, Griffiths M, Dean Cet al., 2019, Live imaging of alveologenesis in precision-cut lung slices reveals dynamic epithelial cell behaviour, Nature Communications, Vol: 10, ISSN: 2041-1723

Damage to alveoli, the gas-exchanging region of the lungs, is a component of many chronic and acute lung diseases. In addition, insufficient generation of alveoli results in bronchopulmonary dysplasia, a disease of prematurity. Therefore visualising the process of alveolar development (alveologenesis) is critical for our understanding of lung homeostasis and for the development of treatments to repair and regenerate lung tissue. Using long-term, time-lapse imaging of precision-cut lung slices, we show alveologenesis for the first time. We reveal that during this process, epithelial cells are highly mobile and we identify specific cell behaviours that contribute to alveologenesis: cell clustering, hollowing and cell extension. Using the cytoskeleton inhibitors blebbistatin and cytochalasin D, we showed that cell migration is a key driver of alveologenesis. This study reveals important novel information about lung biology and provides a new system in which to manipulate alveologenesis genetically and pharmacologically.

Journal article

Henderson DJ, Long DA, Dean CH, 2018, Planar cell polarity in organ formation, Current Opinion in Cell Biology, Vol: 55, Pages: 96-103, ISSN: 0955-0674

The planar cell polarity (PCP) pathway controls a variety of morphological events across many species. During embryonic development, the PCP pathway regulates coordinated behaviour of groups of cells to direct morphogenetic processes such as convergent extension and collective cell migration. In this review we discuss the increasingly prominent role of the PCP pathway in organogenesis, focusing on the lungs, kidneys and heart. We also highlight emerging evidence that PCP gene mutations are associated with adult diseases.

Journal article

Dean CH, Snelgrove RJ, 2018, New rules for club development: new insights into human small airway epithelial club cell ontogeny and function, American Journal of Respiratory and Critical Care Medicine, Vol: 198, Pages: 1355-1366, ISSN: 1073-449X

Journal article

Dean C, Papakrivopoulou E, Vasilopoulou E, Lindenmeyer M, Pacheco S, Brzoska H, Price K, Kolatsi-Joannou M, White K, Henderson D, Cohen C, Salama A, Woolf Aet al., 2018, Vangl2, a planar cell polarity molecule, is implicated in irreversible and reversible kidney glomerular injury, Journal of Pathology, Vol: 246, Pages: 485-496, ISSN: 0022-3417

Planar cell polarity (PCP) pathways control the orientation and alignment of epithelial cells within tissues. Van Gogh‐like 2 (Vangl2) is a key PCP protein that is required for normal differentiation of kidney glomeruli and tubules. Vangl2 has also been implicated in modifying the course of acquired glomerular disease and here we further explored how Vangl2 impacts on glomerular pathobiology in this context. Targeted genetic deletion of Vangl2 in mouse glomerular epithelial podocytes enhanced the severity of not only irreversible accelerated nephrotoxic nephritis but also lipopolysaccharide‐induced reversible glomerular damage. In each proteinuric model, genetic deletion of Vangl2 in podocytes was associated with an increased ratio of active‐MMP9 to inactive MMP9, an enzyme involved in tissue remodelling. Additionally, by interrogating microarray data from two cohorts of renal patients, we report increased VANGL2 transcript levels in glomeruli of individuals with focal segmental glomerulosclerosis, suggesting that the molecule may also be involved in certain human glomerular diseases. These observations support the conclusion that Vangl2 modulates glomerular injury, at least in part by acting as a brake on MMP9, a potentially harmful endogenous enzyme.

Journal article

Zhang Y, Poobalasingam T, Yates LL, Walker SA, Taylor MS, Chessum L, harrison J, Tsaprouni L, Adcock IM, Lloyd CM, Cookson WO, Moffatt MF, Dean CHet al., 2018, Manipulation of Dipeptidylpeptidase 10 in mouse and human in vivo and in vitro models indicates a protective role in asthma, Disease Models and Mechanisms, Vol: 11, ISSN: 1754-8403

We previously identified dipeptidylpeptidase 10 (DPP10) on chromosome 2 as a human asthma susceptibility gene, through positional cloning. Initial association results were confirmed in many subsequent association studies but the functional role of DPP10 in asthma remains unclear. Using the MRC Harwell N-ethyl-N-nitrosourea (ENU) DNA archive, we identified a point mutation in Dpp10 that caused an amino acid change from valine to aspartic acid in the β-propeller region of the protein. Mice carrying this point mutation were recovered and a congenic line was established (Dpp10145D). Macroscopic examination and lung histology revealed no significant differences between wild-type and Dpp10145D/145D mice. However, after house dust mite (HDM) treatment, Dpp10 mutant mice showed significantly increased airway resistance in response to 100 mg/ml methacholine. Total serum IgE levels and bronchoalveolar lavage (BAL) eosinophil counts were significantly higher in homozygotes than in control mice after HDM treatment. DPP10 protein is present in airway epithelial cells and altered expression is observed in both tissue from asthmatic patients and in mice following HDM challenge. Moreover, knockdown of DPP10 in human airway epithelial cells results in altered cytokine responses. These results show that a Dpp10 point mutation leads to increased airway responsiveness following allergen challenge and provide biological evidence to support previous findings from human genetic studies.

Journal article

Dean CH, Lloyd CM, 2017, Lung Alveolar Repair: Not All Cells Are Equal, TRENDS IN MOLECULAR MEDICINE, Vol: 23, Pages: 871-873, ISSN: 1471-4914

The lungs are capable of repair but the extent to which this occurs varies widely. Recent data indicate that, following injury, different progenitor cell populations can arise, depending on the molecular environment. In turn, these result in either normal or aberrant alveolar repair. Thus, a key question in lung regenerative medicine is how to maintain a ‘Goldilocks zone’ of repair.

Journal article

Crompton M, Purnell T, Tyrer HE, Parker A, Ball G, Hardisty-Hughes RE, Gale R, Williams D, Dean CH, Simon MM, Mallon A-M, Wells S, Bhutta MF, Burton MJ, Tateossian H, Brown SDMet al., 2017, A mutation in Nischarin causes otitis media via LIMK1 and NF-kappa B pathways, PLoS Genetics, Vol: 13, ISSN: 1553-7390

Otitis media (OM), inflammation of the middle ear (ME), is a common cause of conductive hearing impairment. Despite the importance of the disease, the aetiology of chronic and recurrent forms of middle ear inflammatory disease remains poorly understood. Studies of the human population suggest that there is a significant genetic component predisposing to the development of chronic OM, although the underlying genes are largely unknown. Using N-ethyl-N-nitrosourea mutagenesis we identified a recessive mouse mutant, edison, that spontaneously develops a conductive hearing loss due to chronic OM. The causal mutation was identified as a missense change, L972P, in the Nischarin (NISCH) gene. edison mice develop a serous or granulocytic effusion, increasingly macrophage and neutrophil rich with age, along with a thickened, inflamed mucoperiosteum. We also identified a second hypomorphic allele, V33A, with only modest increases in auditory thresholds and reduced incidence of OM. NISCH interacts with several proteins, including ITGA5 that is thought to have a role in modulating VEGF-induced angiogenesis and vascularization. We identified a significant genetic interaction between Nisch and Itga5; mice heterozygous for Itga5-null and homozygous for edison mutations display a significantly increased penetrance and severity of chronic OM. In order to understand the pathological mechanisms underlying the OM phenotype, we studied interacting partners to NISCH along with downstream signalling molecules in the middle ear epithelia of edison mouse. Our analysis implicates PAK1 and RAC1, and downstream signalling in LIMK1 and NF-κB pathways in the development of chronic OM.

Journal article

Oozeer F, Yates LL, Dean C, Formstone CJet al., 2017, A role for core planar polarity proteins in cell contact-mediated orientation of planar cell division across the mammalian embryonic skin, SCIENTIFIC REPORTS, Vol: 7, ISSN: 2045-2322

The question of how cell division orientation is determined is fundamentally important for understanding tissue and organ shape in both healthy or disease conditions. Here we provide evidence for cell contact-dependent orientation of planar cell division in the mammalian embryonic skin. We propose a model where the core planar polarity proteins Celsr1 and Frizzled-6 (Fz6) communicate the long axis orientation of interphase basal cells to neighbouring basal mitoses so that they align their horizontal division plane along the same axis. The underlying mechanism requires a direct, cell surface, planar polarised cue, which we posit depends upon variant post-translational forms of Celsr1 protein coupled to Fz6. Our hypothesis has parallels with contact-mediated division orientation in early C. elegans embryos suggesting functional conservation between the adhesion-GPCRs Celsr1 and Latrophilin-1. We propose that linking planar cell division plane with interphase neighbour long axis geometry reinforces axial bias in skin spreading around the mouse embryo body.

Journal article

Poobalasingam T, Yates LL, Walker SA, Pereira M, Gross NY, Ali A, Kolatsi-Joannou M, Jarvelin MR, Pekkanen J, Papakrivopoulou E, Long DA, Griffiths M, Wagner D, Konigshoff M, Hind M, Minelli C, Lloyd CM, Dean Cet al., 2017, Heterozygous Vangl2 looptail mice reveal novel roles for the planar cell polarity pathway in adult lung homeostasis and repair, Disease Models & Mechanisms, Vol: 10, Pages: 409-423, ISSN: 1754-8403

Lung diseases impose a huge economic and health burden worldwide. A key aspect of several adult lung diseases, such as Idiopathic pulmonary fibrosis (IPF) and Chronic Obstructive pulmonary Disease (COPD), including emphysema, is aberrant tissue repair, which leads to an accumulation of damage and impaired respiratory function. Currently, there are few effective treatments available for these diseases and their incidence is rising.The Planar Cell Polarity (PCP) pathway is critical for the embryonic development of many organs, including kidney and lung. We have previously shown that perturbation of the PCP pathway impairs tissue morphogenesis, which disrupts the number and shape of epithelial tubes formed within these organs during embryogenesis. However, very little is known about the role of the PCP pathway beyond birth, partly due to the perinatal lethality of many PCP mouse mutant lines.Here we have investigated heterozygous Looptail (Lp) mice, in which a single copy of the core PCP gene, Vangl2, is disrupted. We show that these mice are viable but display severe airspace enlargement and impaired adult lung function. Underlying these defects, we find that Vangl2Lp/+ lungs exhibit altered distribution of actin microfilaments and abnormal regulation of the actin modifying protein cofilin. In addition, we show that Vangl2Lp/+ lungs exhibit many of the hallmarks of tissue damage including an altered macrophage population, abnormal elastin deposition and elevated levels of the elastin-modifying enzyme, Mmp12, all of which are observed in the lung disease, emphysema.In vitro, VANGL2 disruption impairs directed cell migration and reduces the rate of repair following scratch wounding of human alveolar epithelial cells. Moreover, using population data from a birth cohort of young adults, all aged 31, we found evidence of an interactive effect between VANGL2 and smoking (a tissue damaging insult) on lung function. Finally, we show that that PCP genes VANGL2 and SCRIBBLE (SC

Journal article

Ng-Blichfeldt JP, Alçada J, Montero MA, Dean CH, Griesenbach U, Griffiths MJ, Hind Met al., 2017, Deficient retinoid-driven angiogenesis may contribute to failure of adult human lung regeneration in emphysema, Thorax, Vol: 72, Pages: 510-521, ISSN: 0040-6376

BACKGROUND: Molecular pathways that regulate alveolar development and adult repair represent potential therapeutic targets for emphysema. Signalling via retinoic acid (RA), derived from vitamin A, is required for mammalian alveologenesis, and exogenous RA can induce alveolar regeneration in rodents. Little is known about RA signalling in the human lung and its potential role in lung disease. OBJECTIVES: To examine regulation of human alveolar epithelial and endothelial repair by RA, and characterise RA signalling in human emphysema. METHODS: The role of RA signalling in alveolar epithelial repair was investigated with a scratch assay using an alveolar cell line (A549) and primary human alveolar type 2 (AT2) cells from resected lung, and the role in angiogenesis using a tube formation assay with human lung microvascular endothelial cells (HLMVEC). Localisation of RA synthetic (RALDH-1) and degrading (cytochrome P450 subfamily 26 A1 (CYP26A1)) enzymes in human lung was determined by immunofluorescence. Regulation of RA pathway components was investigated in emphysematous and control human lung tissue by quantitative real-time PCR and Western analysis. RESULTS: RA stimulated HLMVEC angiogenesis in vitro; this was partially reproduced with a RAR-α agonist. RA induced mRNA expression of vascular endothelial growth factor A (VEGFA) and VEGFR2. RA did not modulate AT2 repair. CYP26A1 protein was identified in human lung microvasculature, whereas RALDH-1 partially co-localised with vimentin-positive fibroblasts. CYP26A1 mRNA and protein were increased in emphysema. CONCLUSIONS: RA regulates lung microvascular angiogenesis; the endothelium produces CYP26A1 which is increased in emphysema, possibly leading to reduced RA availability. These data highlight a role for RA in maintenance of the human pulmonary microvascular endothelium.

Journal article

Poobalasingam T, Salman D, Li H, Costa JA, Dean CHet al., 2016, Imaging the lung: the old ways and the new, Histology and Histopathology, Vol: 32, Pages: 325-337, ISSN: 1699-5848

Our understanding of lung biology can be greatly enhanced by studying embryonic and postnatal lung development, and the perturbations which occur during disease. Imaging techniques provide a unique insight into these processes. A wide variety of imaging techniques have been used to study the lungs at various stages of development and disease, ranging from histological stains to more novel techniques such as single plane illumination microscopy (SPIM), intravital microscopy (IVM), and micro-computed tomography (micro-CT). Each of these tools can be used to elicit different information about the lungs and each has its own unique advantages and disadvantages for pulmonary research. In this review we assess some of the most commonly-used and novel imaging techniques available for lung research today.

Journal article

Löser S, Gregory LG, Zhang Y, Schaefer K, Walker SA, Buckley J, Denney L, Dean CH, Cookson WO, Moffatt MF, Lloyd CMet al., 2016, Pulmonary ORMDL3 is critical for induction of Alternaria induced allergic airways disease, Journal of Allergy and Clinical Immunology, Vol: 139, Pages: 1496-1507.e3, ISSN: 1097-6825

BACKGROUND: Genome-wide association studies have identified the ORMDL3 (ORM (yeast)-like protein isoform 3) gene locus on human chromosome 17q to be a highly significant risk factor for childhood-onset asthma. OBJECTIVE: We sought to investigate in vivo the functional role of ORMDL3 in disease inception. METHODS: An Ormdl3 deficient mouse was generated and the role of ORMDL3 in the generation of allergic airways disease to the fungal aeroallergen Alternaria alternata determined. An adeno-associated viral vector was also utilized to reconstitute ORMDL3 expression in airway epithelial cells of Ormdl3 KO mice. RESULTS: Ormdl3 knock-out mice were found to be protected from developing allergic airways disease and showed a marked decrease in pathophysiology, including lung function and airway eosinophilia induced by Alternaria. Alternaria is a potent inducer of cellular stress and the unfolded protein response and ORMDL3 was found to play a critical role in driving the ATF6 mediated arm of this response through Xbp1 and downstream activation of the endoplasmic reticulum-associated degradation pathway. Additionally ORMDL3 mediated uric acid release, another marker of cellular stress. In the knockout mice, reconstitution of Ormdl3 transcript levels specifically in the bronchial epithelium resulted in reinstatement of susceptibility to fungal allergen-induced allergic airways disease. CONCLUSIONS: This study demonstrates that ORMDL3, an asthma susceptibility gene identified by genome-wide association studies, contributes to key pathways that promote changes in airway physiology during allergic immune responses.

Journal article

Minelli C, Dean CH, Hind M, Couto Alves A, Amaral AFS, Siroux V, Huikari V, Soler Artigas M, Evans DM, Loth DW, Bossé Y, Postma DS, Sin D, Thompson J, Demenais F, Henderson J, Bouzigon E, Jarvis D, Jarvelin M, Burney Pet al., 2016, Association of Forced Vital Capacity with the Developmental Gene NCOR2, PLOS One, Vol: 11, ISSN: 1932-6203

BackgroundForced Vital Capacity (FVC) is an important predictor of all-cause mortality in the absenceof chronic respiratory conditions. Epidemiological evidence highlights the role of early lifefactors on adult FVC, pointing to environmental exposures and genes affecting lung developmentas risk factors for low FVC later in life. Although highly heritable, a small number ofgenes have been found associated with FVC, and we aimed at identifying further geneticvariants by focusing on lung development genes.PLOS ONE | DOI:10.1371/journal.pone.0147388 February 2, 2016 1 / 17OPEN ACCESSCitation: Minelli C, Dean CH, Hind M, Alves AC,Amaral AFS, Siroux V, et al. (2016) Association ofForced Vital Capacity with the Developmental GeneNCOR2. PLoS ONE 11(2): e0147388. doi:10.1371/journal.pone.0147388Editor: Philipp Latzin, University Children's HospitalBasel, SWITZERLANDReceived: August 28, 2015Accepted: January 4, 2016Published: February 2, 2016Copyright: © 2016 Minelli et al. This is an openaccess article distributed under the terms of theCreative Commons Attribution License, which permitsunrestricted use, distribution, and reproduction in anymedium, provided the original author and source arecredited.Data Availability Statement: All relevant data arewithin the paper and its Supporting Information files.Funding: The authors have no support or funding toreport.Competing Interests: The authors have declaredthat no competing interests exist.MethodsPer-allele effects of 24,728 SNPs in 403 genes involved in lung development were tested in7,749 adults from three studies (NFBC1966, ECRHS, EGEA). The most significant SNP forthe top 25 genes was followed-up in 46,103 adults (CHARGE and SpiroMeta consortia) and5,062 children (ALSPAC). Associations were considered replicated if the replication p-valuesurvived Bonferroni correction (p<0.002; 0.05/25), with a nominal p-value considered assuggestive evidence. For SNPs with evidence of replication, effects on the expression levelsof n

Journal article

Tateossian H, Morse S, Simon MM, Dean CH, Brown SDMet al., 2015, Interactions between the otitis media gene, Fbxo11, and p53 in the mouse embryonic lung, Disease Models & Mechanisms, Vol: 8, Pages: 1531-1542, ISSN: 1754-8411

Otitis media with effusion (OME) is the most common cause of hearing loss in children, and tympanostomy (ear tube insertion) to alleviate the condition remains the commonest surgical intervention in children in the developed world. Chronic and recurrent forms of otitis media (OM) are known to have a very substantial genetic component; however, until recently, little was known of the underlying genes involved. The Jeff mouse mutant carries a mutation in the Fbxo11 gene, a member of the F-box family, and develops deafness due to a chronic proliferative OM. We previously reported that Fbxo11 is involved in the regulation of transforming growth factor beta (TGF-β) signalling by regulating the levels of phospho-Smad2 in the epithelial cells of palatal shelves, eyelids and airways of the lungs. It has been proposed that FBXO11 regulates the cell's response to TGF-β through the ubiquitination of CDT2. Additional substrates for FBXO11 have been identified, including p53. Here, we have studied both the genetic and biochemical interactions between FBXO11 and p53 in order to better understand the function of FBXO11 in epithelial development and its potential role in OM. In mice, we show that p53 (also known as Tp53) homozygous mutants and double heterozygous mutants (Jf/+ p53/+) exhibit similar epithelial developmental defects to Fbxo11 homozygotes. FBXO11 and p53 interact in the embryonic lung, and mutation in Fbxo11 prevents the interaction with p53. Both p53 and double mutants show raised levels of pSMAD2, recapitulating that seen in Fbxo11 homozygotes. Overall, our results support the conclusion that FBXO11 regulates the TGF-β pathway in the embryonic lung via cross-talk with p53.

Journal article

Ramsbottom SA, Sharma V, Rhee HJ, Eley L, Phillips HM, Rigby HF, Dean C, Chaudhry B, Henderson DJet al., 2014, Vangl2-Regulated Polarisation of Second Heart Field-Derived Cells Is Required for Outflow Tract Lengthening during Cardiac Development, PLOS GENETICS, Vol: 10, ISSN: 1553-7390

Journal article

Zhang Y, Dean C, Chessum L, Dao N, Stewart M, Taylor M, Cookson WO, Moffatt MFet al., 2014, Functional analysis of a novel ENU-induced PHD finger 11 (Phf11) mouse mutant, MAMMALIAN GENOME, Vol: 25, Pages: 573-582, ISSN: 0938-8990

Journal article

Goggolidou P, Hadjirin NF, Bak A, Papakrivopoulou E, Hilton H, Norris DP, Dean CHet al., 2014, Atmin mediates kidney morphogenesis by modulating Wnt signaling, HUMAN MOLECULAR GENETICS, Vol: 23, Pages: 5303-5316, ISSN: 0964-6906

Journal article

Dean CH, 2014, NORMAL AND ABNORMAL LUNG DEVELOPMENT-RECENT ADVANCES, PEDIATRIC PULMONOLOGY, Vol: 49, Pages: S25-S26, ISSN: 8755-6863

Journal article

Papakrivopoulou E, Dean CH, Copp AJ, Long DAet al., 2013, Planar cell polarity and the kidney, Nephrology Dialysis Transplantation, Vol: 29, Pages: 1320-1326, ISSN: 1460-2385

Journal article

Dean C, Bingle C, Hind M, 2013, Delivering and phenotyping mouse models for the respiratory community: a report on the Biochemical Society Workshop, CLINICAL SCIENCE, Vol: 125, Pages: 495-500, ISSN: 0143-5221

Journal article

Yates LL, Schnatwinkel C, Hazelwood L, Chessum L, Paudyal A, Hilton H, Romero MR, Wilde J, Bogani D, Sanderson J, Formstone C, Murdoch JN, Niswander LA, Greenfield A, Dean CHet al., 2013, Scribble is required for normal epithelial cell-cell contacts and lumen morphogenesis in the mammalian lung, DEVELOPMENTAL BIOLOGY, Vol: 373, Pages: 267-280, ISSN: 0012-1606

Journal article

Hasan NA, Hind M, Dean CH, 2012, MECHANISMS OF LUNG REPAIR POST INJURY: THE ROLE FOR NON-CANONICAL WNT SIGNALLING AND PLANAR CELL POLARITY, Winter Meeting of the British-Thoracic-Society 2012, Publisher: BMJ PUBLISHING GROUP, Pages: A36-A36, ISSN: 0040-6376

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00713907&limit=30&person=true