Imperial College London

Professor Christl Donnelly CBE FMedSci FRS

Faculty of MedicineSchool of Public Health

Visiting Professor
 
 
 
//

Contact

 

c.donnelly Website

 
 
//

Location

 

School of Public HealthWhite City Campus

//

Summary

 

Publications

Publication Type
Year
to

530 results found

Penn MJ, Donnelly CA, 2023, Asymptotic analysis of optimal vaccination policies, Bulletin of Mathematical Biology, Vol: 85, Pages: 1-72, ISSN: 0092-8240

Targeted vaccination policies can have a significant impact on the number of infections and deaths in an epidemic. However, optimising such policies is complicated, and the resultant solution may be difficult to explain to policy-makers and to the public. The key novelty of this paper is a derivation of the leading-order optimal vaccination policy under multi-group susceptible–infected–recovered dynamics in two different cases. Firstly, it considers the case of a small vulnerable subgroup in a population and shows that (in the asymptotic limit) it is optimal to vaccinate this group first, regardless of the properties of the other groups. Then, it considers the case of a small vaccine supply and transforms the optimal vaccination problem into a simple knapsack problem by linearising the final size equations. Both of these cases are then explored further through numerical examples, which show that these solutions are also directly useful for realistic parameter values. Moreover, the findings of this paper give some general principles for optimal vaccination policies which will help policy-makers and the public to understand the reasoning behind optimal vaccination programs in more generic cases.

Journal article

Kartsonaki C, Baillie JK, Garcia Barrio N, Baruch J, Beane A, Blumberg L, Bozza F, Broadley T, Burrell A, Carson G, Citarella BW, Dagens A, Dankwa EA, Donnelly CA, Dunning J, Elotmani L, Escher M, Farshait N, Goffard J-C, Goncalves BP, Hall M, Hashmi M, Sim Lim Heng B, Ho A, Jassat W, Pedrera Jimenez M, Laouenan C, Lissauer S, Martin-Loeches I, Mentre F, Merson L, Morton B, Munblit D, Nekliudov NA, Nichol AD, Singh Oinam BC, Ong D, Panda PK, Petrovic M, Pritchard MG, Ramakrishnan N, Ramos GV, Roger C, Sandulescu O, Semple MG, Sharma P, Sigfrid L, Somers EC, Streinu-Cercel A, Taccone F, Vecham PK, Kumar Tirupakuzhi Vijayaraghavan B, Wei J, Wils E-J, Ci Wong X, Horby P, Rojek A, Olliaro PL, Abbas Aet al., 2023, Characteristics and outcomes of an international cohort of 600000 hospitalized patients with COVID-19, INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, ISSN: 0300-5771

Journal article

Atchison C, Moshe M, Brown J, Whitaker M, Wong N, Bharath A, Mckendry R, Darzi A, Ashby D, Donnelly C, Riley S, Elliott P, Barclay W, Cooke G, Ward Het al., 2023, Validity of self-testing at home with rapid SARS-CoV-2 antibody detection by lateral flow immunoassay, Clinical Infectious Diseases, Vol: 76, Pages: 658-666, ISSN: 1058-4838

Background: We explore severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody lateral flow immunoassay (LFIA) performance under field conditions compared to laboratory-based ELISA and live virus neutralisation. Methods: In July 2021, 3758 participants performed, at home, a self-administered LFIA on finger-prick blood, reported and submitted a photograph of the result, and provided a self-collected capillary blood sample for assessment of IgG antibodies using the Roche Elecsys® Anti-SARS-CoV-2 assay. We compared the self-reported LFIA result to the quantitative Roche assay and checked the reading of the LFIA result with an automated image analysis (ALFA). In a subsample of 250 participants, we compared the results to live virus neutralisation. Results: Almost all participants (3593/3758, 95.6%) had been vaccinated or reported prior infection. Overall, 2777/3758 (73.9%) were positive on self-reported LFIA, 2811/3457 (81.3%) positive by LFIA when ALFA-reported, and 3622/3758 (96.4%) positive on Roche (using the manufacturer reference standard threshold for positivity of 0.8 U ml−1). Live virus neutralisation was detected in 169 of 250 randomly selected samples (67.6%); 133/169 were positive with self-reported LFIA (sensitivity 78.7%; 95% CI 71.8, 84.6), 142/155 (91.6%; 86.1, 95.5) with ALFA, and 169 (100%; 97.8, 100.0) with Roche. There were 81 samples with no detectable virus neutralisation; 47/81 were negative with self-reported LFIA (specificity 58.0%; 95% CI 46.5, 68.9), 34/75 (45.3%; 33.8, 57.3) with ALFA, and 0/81 (0%; 0.0, 4.5) with Roche. Conclusions: Self-administered LFIA is less sensitive than a quantitative antibody test, but the positivity in LFIA correlates better than the quantitative ELISA with virus neutralisation.

Journal article

Eales O, Page AJ, Tang SN, Walters CE, Wang H, Haw D, Trotter AJ, Le Viet T, Foster-Nyarko E, Prosolek S, Atchison C, Ashby D, Cooke G, Barclay W, Donnelly CA, O'Grady J, Volz E, The Covid-Genomics Uk Cog-Uk Consortium, Darzi A, Ward H, Elliott P, Riley Set al., 2023, The use of representative community samples to assess SARS-CoV-2 lineage competition: Alpha outcompetes Beta and wild-type in England from January to March 2021., Microbial Genomics, Vol: 9, Pages: 1-14, ISSN: 2057-5858

Genomic surveillance for SARS-CoV-2 lineages informs our understanding of possible future changes in transmissibility and vaccine efficacy and will be a high priority for public health for the foreseeable future. However, small changes in the frequency of one lineage over another are often difficult to interpret because surveillance samples are obtained using a variety of methods all of which are known to contain biases. As a case study, using an approach which is largely free of biases, we here describe lineage dynamics and phylogenetic relationships of the Alpha and Beta variant in England during the first 3 months of 2021 using sequences obtained from a random community sample who provided a throat and nose swab for rt-PCR as part of the REal-time Assessment of Community Transmission-1 (REACT-1) study. Overall, diversity decreased during the first quarter of 2021, with the Alpha variant (first identified in Kent) becoming predominant, driven by a reproduction number 0.3 higher than for the prior wild-type. During January, positive samples were more likely to be Alpha in those aged 18 to 54 years old. Although individuals infected with the Alpha variant were no more likely to report one or more classic COVID-19 symptoms compared to those infected with wild-type, they were more likely to be antibody-positive 6 weeks after infection. Further, viral load was higher in those infected with the Alpha variant as measured by cycle threshold (Ct) values. The presence of infections with non-imported Beta variant (first identified in South Africa) during January, but not during February or March, suggests initial establishment in the community followed by fade-out. However, this occurred during a period of stringent social distancing. These results highlight how sequence data from representative community surveys such as REACT-1 can augment routine genomic surveillance during periods of lineage diversity.

Journal article

Tirupakuzhi Vijayaraghavan BK, Bishnu S, Baruch J, Citarella BW, Kartsonaki C, Meeyai A, Mohamed Z, Ohshimo S, Lefèvre B, Al-Fares A, Calvache JA, Taccone FS, Olliaro P, Merson L, Adhikari NKJ, ISARIC Clinical Characterisation Groupet al., 2023, Liver injury in hospitalized patients with COVID-19: An International observational cohort study., PLoS One, Vol: 18

BACKGROUND: Using a large dataset, we evaluated prevalence and severity of alterations in liver enzymes in COVID-19 and association with patient-centred outcomes. METHODS: We included hospitalized patients with confirmed or suspected SARS-CoV-2 infection from the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) database. Key exposure was baseline liver enzymes (AST, ALT, bilirubin). Patients were assigned Liver Injury Classification score based on 3 components of enzymes at admission: Normal; Stage I) Liver injury: any component between 1-3x upper limit of normal (ULN); Stage II) Severe liver injury: any component ≥3x ULN. Outcomes were hospital mortality, utilization of selected resources, complications, and durations of hospital and ICU stay. Analyses used logistic regression with associations expressed as adjusted odds ratios (OR) with 95% confidence intervals (CI). RESULTS: Of 17,531 included patients, 46.2% (8099) and 8.2% (1430) of patients had stage 1 and 2 liver injury respectively. Compared to normal, stages 1 and 2 were associated with higher odds of mortality (OR 1.53 [1.37-1.71]; OR 2.50 [2.10-2.96]), ICU admission (OR 1.63 [1.48-1.79]; OR 1.90 [1.62-2.23]), and invasive mechanical ventilation (OR 1.43 [1.27-1.70]; OR 1.95 (1.55-2.45). Stages 1 and 2 were also associated with higher odds of developing sepsis (OR 1.38 [1.27-1.50]; OR 1.46 [1.25-1.70]), acute kidney injury (OR 1.13 [1.00-1.27]; OR 1.59 [1.32-1.91]), and acute respiratory distress syndrome (OR 1.38 [1.22-1.55]; OR 1.80 [1.49-2.17]). CONCLUSIONS: Liver enzyme abnormalities are common among COVID-19 patients and associated with worse outcomes.

Journal article

Hayes S, Lushasi K, Sambo M, Changalucha J, Ferguson EA, Sikana L, Hampson K, Nouvellet P, Donnelly CAet al., 2022, Understanding the incidence and timing of rabies cases in domestic animals and wildlife in south-east Tanzania in the presence of widespread domestic dog vaccination campaigns, VETERINARY RESEARCH, Vol: 53, ISSN: 0928-4249

Journal article

Dankwa E, Brouwer AF, Donnelly C, 2022, Structural identifiability of compartmental models for infectious disease transmission is influenced by data type, Epidemics: the journal of infectious disease dynamics, Vol: 41, ISSN: 1755-4365

If model identifiability is not confirmed, inferences from infectious disease transmission models may not be reliable, so they might result in misleading recommendations. Structural identifiability analysis characterises whether it is possible to obtain unique solutions for all unknown model parameters, given the model structure. In this work, we studied the structural identifiability of some typical deterministic compartmental models for infectious disease transmission, focusing on the influence of the data type considered as model output on the identifiability of unknown model parameters, including initial conditions. We defined 26 model versions, each having a unique combination of underlying compartmental structure and data type(s) considered as model output(s). Four compartmental model structures and three common data types in disease surveillance (incidence, prevalence and detected vector counts) were studied. The structural identifiability of some parameters varied depending on the type of model output. In general, models with multiple data types as outputs had more structurally identifiable parameters, than did models with a single data type as output. This study highlights the importance of a careful consideration of data types as an integral part of the inference process with compartmental infectious disease transmission models.

Journal article

Longini IM, Yang Y, Fleming TR, Munoz-Fontela C, Wang R, Ellenberg SS, Qian G, Halloran ME, Nason M, De Gruttola V, Mulangu S, Huang Y, Donnelly C, Henao Restrepo A-Met al., 2022, A platform trial design for preventive vaccines against Marburg virus and other emerging infectious disease threats, Clinical Trials, Vol: 19, Pages: 647-654, ISSN: 1740-7745

Background:The threat of a possible Marburg virus disease outbreak in Central and Western Africa is growing. While no Marburg virus vaccines are currently available for use, several candidates are in the pipeline. Building on knowledge and experiences in the designs of vaccine efficacy trials against other pathogens including SARS-CoV-2, we develop designs of randomized phase 3 vaccine efficacy trials for Marburg virus vaccines. Methods:A core protocol approach will be used, allowing multiple vaccine candidates to be tested against controls. The primary objective of the trial will be to evaluate the effect of each vaccine on the rate of virologically confirmed Marburg virus disease, although Marburg infection, assessed via seroconversion could be the primary objective in some cases. The overall trial design will be a mixture of individually and cluster randomized designs, with individual randomization done whenever possible. Clusters will consist of either contacts and contacts of contacts of index cases, i.e., ring vaccination, or other transmission units. Results:The primary efficacy endpoint will be analysed as a time-to-event outcome. A vaccine will be considered successful if its estimated efficacy is greater than 50% and has sufficient precision to rule out that true efficacy is less than 30%. This will require approximately 150 total endpoints, i.e., cases of confirmed Marburg virus disease, per vaccine/comparator combination Interim analyses will be conducted after 50 and after 100 events. Statistical analysis of the trial will be blended across the different types of designs. Under the assumption of a 6-month attack rate of 1% of the of the participants in the placebo arm for both the individually and cluster randomize populations, the most likely sample size is about 20,000 participants per armConclusions:This event-driven design takes into the account the potentially sporadic spread of Marburg virus. The proposed trial design may be applica

Journal article

Unwin H, Cori A, Imai N, Gaythorpe K, Bhatia S, Cattarino L, Donnelly C, Ferguson N, Baguelin Met al., 2022, Using next generation matrices to estimate the proportion of infections that are not detected in an outbreak, Epidemics: the journal of infectious disease dynamics, Vol: 41, ISSN: 1755-4365

Contact tracing, where exposed individuals are followed up to break ongoing transmission chains, is a key pillar of outbreak response for infectious disease outbreaks. Unfortunately, these systems are not fully effective, and infections can still go undetected as people may not remember all their contacts or contacts may not be traced successfully. A large proportion of undetected infections suggests poor contact tracing and surveillance systems, which could be a potential area of improvement for a disease response. In this paper, we present a method for estimating the proportion of infections that are not detected during an outbreak. Our method uses next generation matrices that are parameterized by linked contact tracing data and case line-lists. We validate the method using simulated data from an individual-based model and then investigate two case studies: the proportion of undetected infections in the SARS-CoV-2 outbreak in New Zealand during 2020 and the Ebola epidemic in Guinea during 2014. We estimate that only 5.26% of SARS-CoV-2 infections were not detected in New Zealand during 2020 (95% credible interval: 0.243 – 16.0%) if 80% of contacts were under active surveillance but depending on assumptions about the ratio of contacts not under active surveillance versus contacts under active surveillance 39.0% or 37.7% of Ebola infections were not detected in Guinea (95% credible intervals: 1.69 – 87.0% or 1.70 – 80.9%).

Journal article

Charniga K, Cucunuba Z, Walteros DM, Mercado M, Prieto F, Ospina M, Nouvellet P, Donnelly Cet al., 2022, Estimating Zika virus attack rates and risk of Zika virus-associated neurological complications in Colombian capital cities with a Bayesian model, Royal Society Open Science, Vol: 9, ISSN: 2054-5703

Zika virus (ZIKV) is a mosquito-borne pathogen that caused a major epidemic in the Americas in 2015–2017. Although the majority of ZIKV infections are asymptomatic, the virus has been associated with congenital birth defects and neurological complications (NC) in adults. We combined multiple data sources to improve estimates of ZIKV infection attack rates (IARs), reporting rates of Zika virus disease (ZVD) and the risk of ZIKV-associated NC for 28 capital cities in Colombia. ZVD surveillance data were combined with post-epidemic seroprevalence data and a dataset on ZIKV-associated NC in a Bayesian hierarchical model. We found substantial heterogeneity in ZIKV IARs across cities. The overall estimated ZIKV IAR across the 28 cities was 0.38 (95% CrI: 0.17–0.92). The estimated ZVD reporting rate was 0.013 (95% CrI: 0.004–0.024), and 0.51 (95% CrI: 0.17–0.92) cases of ZIKV-associated NC were estimated to be reported per 10 000 ZIKV infections. When we assumed the same ZIKV IAR across sex or age group, we found important spatial heterogeneities in ZVD reporting rates and the risk of being reported as a ZVD case with NC. Our results highlight how additional data sources can be used to overcome biases in surveillance data and estimate key epidemiological parameters.

Journal article

Eales O, Wang H, Haw D, Ainslie KEC, Walters C, Atchison C, Cooke G, Barclay W, Ward H, Darzi A, Ashby D, Donnelly C, Elliott P, Riley Set al., 2022, Trends in SARS-CoV-2 infection prevalence during England’s roadmap out of lockdown, January to July 2021, PLoS Computational Biology, Vol: 18, Pages: 1-16, ISSN: 1553-734X

Background:Following rapidly rising COVID-19 case numbers, England entered a national lockdown on 6 January 2021, with staged relaxations of restrictions from 8 March 2021 onwards.Aim:We characterise how the lockdown and subsequent easing of restrictions affected trends in SARS-CoV-2 infection prevalence.Methods:On average, risk of infection is proportional to infection prevalence. The REal-time Assessment of Community Transmission-1 (REACT-1) study is a repeat cross-sectional study of over 98,000 people every round (rounds approximately monthly) that estimates infection prevalence in England. We used Bayesian P-splines to estimate prevalence and the time-varying reproduction number (Rt) nationally, regionally and by age group from round 8 (beginning 6 January 2021) to round 13 (ending 12 July 2021) of REACT-1. As a comparator, a separate segmented-exponential model was used to quantify the impact on Rt of each relaxation of restrictions.Results:Following an initial plateau of 1.54% until mid-January, infection prevalence decreased until 13 May when it reached a minimum of 0.09%, before increasing until the end of the study to 0.76%. Following the first easing of restrictions, which included schools reopening, the reproduction number Rt increased by 82% (55%, 108%), but then decreased by 61% (82%, 53%) at the second easing of restrictions, which was timed to match the Easter school holidays. Following further relaxations of restrictions, the observed Rt increased steadily, though the increase due to these restrictions being relaxed was offset by the effects of vaccination and also affected by the rapid rise of Delta. There was a high degree of synchrony in the temporal patterns of prevalence between regions and age groups.Conclusion:High-resolution prevalence data fitted to P-splines allowed us to show that the lockdown was effective at reducing risk of infection with school holidays/closures playing a significant part.

Journal article

Whitaker M, Elliott J, Bodinier B, Barclay W, Ward H, Cooke G, Donnelly C, Chadeau M, Elliott Pet al., 2022, Variant-specific symptoms of COVID-19 in a study of 1,542,510 adults in England, Nature Communications, Vol: 13, Pages: 1-10, ISSN: 2041-1723

Infection with SARS-CoV-2 virus is associated with a wide range of symptoms. The REal-time Assessment of Community Transmission -1 (REACT-1) study monitored the spread and clinical manifestation of SARS-CoV-2 among random samples of the population in England from 1 May 2020 to 31 March 2022. We show changing symptom profiles associated with the different variants over that period, with lower reporting of loss of sense of smell or taste for Omicron compared to previous variants, and higher reporting of cold-like and influenza-like symptoms, controlling for vaccination status. Contrary to the perception that recent variants have become successively milder, Omicron BA.2 was associated with reporting more symptoms, with greater disruption to daily activities, than BA.1. With restrictions lifted and routine testing limited in many countries, monitoring the changing symptom profiles associated with SARS-CoV-2 infection and effects on daily activities will become increasingly important.

Journal article

Parag K, Thompson R, Donnelly C, 2022, Are epidemic growth rates more informative than reproduction numbers?, Journal of the Royal Statistical Society Series A: Statistics in Society, Vol: 185, Pages: S5-S15, ISSN: 0964-1998

Summary statistics, often derived from simplified models of epidemic spread, inform public health policy in real time. The instantaneous reproduction number, Rt, , is predominant among these statistics, measuring the average ability of an infection to multiply. However, Rt, encodes no temporal information and is sensitive to modelling assumptions. Consequently, some have proposed the epidemic growth rate, rt, that is, the rate of change of the log-transformed case incidence, as a more temporally meaningful and model-agnostic policy guide. We examine this assertion, identifying if and when estimates of rt are more informative than those ofRt. We assess their relative strengths both for learning about pathogen transmission mechanisms and for guiding public health interventions in real time.

Journal article

Parag KV, Thompson RN, Donnelly CA, 2022, Authors' reply to the discussion of 'Are epidemic growth rates more informative than reproduction numbers?' by Parag et al. in Session 1 of the Royal Statistical Society's Special Topic Meeting on COVID-19 transmission: 9 June 2021, JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, Vol: 185, Pages: S55-S60, ISSN: 0964-1998

Journal article

Eales O, Haw D, Wang H, Atchison C, Ashby D, Cooke G, Barclay W, Ward H, Darzi A, Donnelly CA, Chadeau-Hyam M, Elliott P, Riley Set al., 2022, Quantifying changes in the IFR and IHR over 23 months of the SARS-CoV-2 pandemic in England

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>The relationship between prevalence of infection and severe outcomes such as hospitalisation and death changed over the course of the COVID-19 pandemic. The REal-time Assessment of Community Transmission-1 (REACT-1) study estimated swab positivity in England approximately monthly from May 2020 to 31 March 2022. This period covers widespread circulation of the original strain, the emergence of the Alpha, Delta and Omicron variants and the rollout of England’s mass vaccination campaign.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>Here, we explore this changing relationship between prevalence of swab positivity and the infection fatality rate (IFR) and infection hospitalisation rate (IHR) over 23 months of the pandemic in England, using publicly available data for the daily number of deaths and hospitalisations, REACT-1 swab positivity data, time-delay models and Bayesian P-spline models. We analyse data for all age groups together, as well as in two sub-groups: those aged 65 and over and those aged 64 and under.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>During 2020, we estimated the IFR to be 0.67% and the IHR to be 2.6%. By late-2021/early-2022 the IFR and IHR had both decreased to 0.097% and 0.76% respectively. Continuous estimates of the IFR and IHR of the virus were observed to increase during the periods of Alpha and Delta’s emergence. During periods of vaccination rollout, and the emergence of the Omicron variant, the IFR and IHR of the virus decreased. During 2020, we estimated a time-lag of 19 days between hospitalisation and swab positivity, and 26 days between deaths and swab positivity. By late-2021/early-2022 these time-lags had decreased to 7 days for hospitalisations, and 18 days for deaths.</jats:

Journal article

Chadeau-Hyam M, Tang D, Eales O, Bodinier B, Wang H, Jonnerby J, Whitaker M, Elliott J, Haw D, Walters CE, Atchison C, Diggle PJ, Page AJ, Ashby D, Barclay W, Taylor G, Cooke G, Ward H, Darzi A, Donnelly CA, Elliott Pet al., 2022, Omicron SARS-CoV-2 epidemic in England during February 2022: A series of cross-sectional community surveys, The Lancet Regional Health Europe, Vol: 21, Pages: 1-11, ISSN: 2666-7762

BackgroundThe Omicron wave of COVID-19 in England peaked in January 2022 resulting from the rapid transmission of the Omicron BA.1 variant. We investigate the spread and dynamics of the SARS-CoV-2 epidemic in the population of England during February 2022, by region, age and main SARS-CoV-2 sub-lineage.MethodsIn the REal-time Assessment of Community Transmission-1 (REACT-1) study we obtained data from a random sample of 94,950 participants with valid throat and nose swab results by RT-PCR during round 18 (8 February to 1 March 2022).FindingsWe estimated a weighted mean SARS-CoV-2 prevalence of 2.88% (95% credible interval [CrI] 2.76–3.00), with a within-round effective reproduction number (R) overall of 0.94 (0·91–0.96). While within-round weighted prevalence fell among children (aged 5 to 17 years) and adults aged 18 to 54 years, we observed a level or increasing weighted prevalence among those aged 55 years and older with an R of 1.04 (1.00–1.09). Among 1,616 positive samples with sublineages determined, one (0.1% [0.0–0.3]) corresponded to XE BA.1/BA.2 recombinant and the remainder were Omicron: N=1047, 64.8% (62.4–67.2) were BA.1; N=568, 35.2% (32.8–37.6) were BA.2. We estimated an R additive advantage for BA.2 (vs BA.1) of 0.38 (0.34–0.41). The highest proportion of BA.2 among positives was found in London.InterpretationIn February 2022, infection prevalence in England remained high with level or increasing rates of infection in older people and an uptick in hospitalisations. Ongoing surveillance of both survey and hospitalisations data is required.FundingDepartment of Health and Social Care, England.

Journal article

Parag KV, Donnelly CA, Zarebski AE, 2022, Quantifying the information in noisy epidemic curves, Nature Computational Science, Vol: 2, Pages: 584-594, ISSN: 2662-8457

Reliably estimating the dynamics of transmissible diseases from noisy surveillance data is an enduring problem in modern epidemiology. Key parameters are often inferred from incident time series, with the aim of informing policy-makers on the growth rate of outbreaks or testing hypotheses about the effectiveness of public health interventions. However, the reliability of these inferences depends critically on reporting errors and latencies innate to the time series. Here, we develop an analytical framework to quantify the uncertainty induced by under-reporting and delays in reporting infections, as well as a metric for ranking surveillance data informativeness. We apply this metric to two primary data sources for inferring the instantaneous reproduction number: epidemic case and death curves. We find that the assumption of death curves as more reliable, commonly made for acute infectious diseases such as COVID-19 and influenza, is not obvious and possibly untrue in many settings. Our framework clarifies and quantifies how actionable information about pathogen transmissibility is lost due to surveillance limitations.

Journal article

Reyes LF, Murthy S, Garcia-Gallo E, Merson L, Ibanez-Prada ED, Rello J, Fuentes Y, Martin-Loeches I, Bozza F, Duque S, Taccone FS, Fowler RA, Kartsonaki C, Goncalves BP, Citarella BW, Aryal D, Burhan E, Cummings MJ, Delmas C, Diaz R, Figueiredo-Mello C, Hashmi M, Panda PK, Jimenez MP, Rincon DFB, Thomson D, Nichol A, Marshall JC, Olliaro PLet al., 2022, Respiratory support in patients with severe COVID-19 in the International Severe Acute Respiratory and Emerging Infection (ISARIC) COVID-19 study: a prospective, multinational, observational study, Critical Care (UK), Vol: 26, Pages: 1-16, ISSN: 1364-8535

BackgroundUp to 30% of hospitalised patients with COVID-19 require advanced respiratory support, including high-flow nasal cannulas (HFNC), non-invasive mechanical ventilation (NIV), or invasive mechanical ventilation (IMV). We aimed to describe the clinical characteristics, outcomes and risk factors for failing non-invasive respiratory support in patients treated with severe COVID-19 during the first two years of the pandemic in high-income countries (HICs) and low middle-income countries (LMICs).MethodsThis is a multinational, multicentre, prospective cohort study embedded in the ISARIC-WHO COVID-19 Clinical Characterisation Protocol. Patients with laboratory-confirmed SARS-CoV-2 infection who required hospital admission were recruited prospectively. Patients treated with HFNC, NIV, or IMV within the first 24 h of hospital admission were included in this study. Descriptive statistics, random forest, and logistic regression analyses were used to describe clinical characteristics and compare clinical outcomes among patients treated with the different types of advanced respiratory support.ResultsA total of 66,565 patients were included in this study. Overall, 82.6% of patients were treated in HIC, and 40.6% were admitted to the hospital during the first pandemic wave. During the first 24 h after hospital admission, patients in HICs were more frequently treated with HFNC (48.0%), followed by NIV (38.6%) and IMV (13.4%). In contrast, patients admitted in lower- and middle-income countries (LMICs) were less frequently treated with HFNC (16.1%) and the majority received IMV (59.1%). The failure rate of non-invasive respiratory support (i.e. HFNC or NIV) was 15.5%, of which 71.2% were from HIC and 28.8% from LMIC. The variables most strongly associated with non-invasive ventilation failure, defined as progression to IMV, were high leukocyte counts at hospital admission (OR [95%CI]; 5.86 [4.83–7.10]), treatment in an LMIC (OR [95%CI]; 2.04 [1.97–2.11]), and tac

Journal article

Menkir TF, Donnelly CA, 2022, The impact of repeated rapid test strategies on the effectiveness of at-home antiviral treatments for SARS-CoV-2, NATURE COMMUNICATIONS, Vol: 13

Journal article

Mullins E, McCabe R, Bird SM, Randell P, Pond MJ, Regan L, Parker E, McClure M, Donnelly CAet al., 2022, Tracking the incidence and risk factors for SARS-CoV-2 infection using historical maternal booking serum samples, PLoS One, Vol: 17, Pages: e0273966-e0273966, ISSN: 1932-6203

The early transmission dynamics of SARS-CoV-2 in the UK are unknown but their investigation is critical to aid future pandemic planning. We tested over 11,000 anonymised, stored historic antenatal serum samples, given at two north-west London NHS trusts in 2019 and 2020, for total antibody to SARS-CoV-2 receptor binding domain (anti-RBD). Estimated prevalence of seroreactivity increased from 1% prior to mid-February 2020 to 17% in September 2020. Our results show higher prevalence of seroreactivity to SARS-CoV-2 in younger, non-white ethnicity, and more deprived groups. We found no significant interaction between the effects of ethnicity and deprivation. Derived from prevalence, the estimated incidence of seroreactivity reflects the trends observed in daily hospitalisations and deaths in London that followed 10 and 13 days later, respectively. We quantified community transmission of SARS-CoV-2 in London, which peaked in late March / early April 2020 with no evidence of community transmission until after January 2020. Our study was not able to determine the date of introduction of the SARS-CoV-2 virus but demonstrates the value of stored antenatal serum samples as a resource for serosurveillance during future outbreaks.

Journal article

Ezanno P, Picault S, Bareille S, Beaunée G, Boender GJ, Dankwa EA, Deslandes F, Donnelly CA, Hagenaars TJ, Hayes S, Jori F, Lambert S, Mancini M, Munoz F, Pleydell DRJ, Thompson RN, Vergu E, Vignes M, Vergne Tet al., 2022, The African swine fever modelling challenge: Model comparison and lessons learnt, Epidemics: the journal of infectious disease dynamics, Vol: 40, ISSN: 1755-4365

Robust epidemiological knowledge and predictive modelling tools are needed to address challenging objectives, such as: understanding epidemic drivers; forecasting epidemics; and prioritising control measures. Often, multiple modelling approaches can be used during an epidemic to support effective decision making in a timely manner. Modelling challenges contribute to understanding the pros and cons of different approaches and to fostering technical dialogue between modellers. In this paper, we present the results of the first modelling challenge in animal health - the ASF Challenge - which focused on a synthetic epidemic of African swine fever (ASF) on an island. The modelling approaches proposed by five independent international teams were compared. We assessed their ability to predict temporal and spatial epidemic expansion at the interface between domestic pigs and wild boar, and to prioritise a limited number of alternative interventions. We also compared their qualitative and quantitative spatio-temporal predictions over the first two one-month projection phases of the challenge. Top-performing models in predicting the ASF epidemic differed according to the challenge phase, host species, and in predicting spatial or temporal dynamics. Ensemble models built using all team-predictions outperformed any individual model in at least one phase. The ASF Challenge demonstrated that accounting for the interface between livestock and wildlife is key to increasing our effectiveness in controlling emerging animal diseases, and contributed to improving the readiness of the scientific community to face future ASF epidemics. Finally, we discuss the lessons learnt from model comparison to guide decision making.

Journal article

Eales O, Ainslie KEC, Walters CE, Wang H, Atchison C, Ashby D, Donnelly CA, Cooke G, Barclay W, Ward H, Darzi A, Elliott P, Riley Set al., 2022, Appropriately smoothing prevalence data to inform estimates of growth rate and reproduction number, Epidemics: the journal of infectious disease dynamics, Vol: 40, ISSN: 1755-4365

The time-varying reproduction number () can change rapidly over the course of a pandemic due to changing restrictions, behaviours, and levels of population immunity. Many methods exist that allow the estimation of from case data. However, these are not easily adapted to point prevalence data nor can they infer across periods of missing data. We developed a Bayesian P-spline model suitable for fitting to a wide range of epidemic time-series, including point-prevalence data. We demonstrate the utility of the model by fitting to periodic daily SARS-CoV-2 swab-positivity data in England from the first 7 rounds (May 2020–December 2020) of the REal-time Assessment of Community Transmission-1 (REACT-1) study. Estimates of over the period of two subsequent rounds (6–8 weeks) and single rounds (2–3 weeks) inferred using the Bayesian P-spline model were broadly consistent with estimates from a simple exponential model, with overlapping credible intervals. However, there were sometimes substantial differences in point estimates. The Bayesian P-spline model was further able to infer changes in over shorter periods tracking a temporary increase above one during late-May 2020, a gradual increase in over the summer of 2020 as restrictions were eased, and a reduction in during England’s second national lockdown followed by an increase as the Alpha variant surged. The model is robust against both under-fitting and over-fitting and is able to interpolate between periods of available data; it is a particularly versatile model when growth rate can change over small timescales, as in the current SARS-CoV-2 pandemic. This work highlights the importance of pairing robust methods with representative samples to track pandemics.

Journal article

Dankwa EA, Lambert S, Hayes S, Thompson RN, Donnelly CAet al., 2022, Stochastic modelling of African swine fever in wild boar and domestic pigs: Epidemic forecasting and comparison of disease management strategies, EPIDEMICS, Vol: 40, ISSN: 1755-4365

Journal article

Elliott P, Eales O, Bodinier B, Tang D, Wang H, Jonnerby LJA, Haw D, Elliott J, Whitaker M, Walters C, Atchison C, Diggle P, Page A, Trotter A, Ashby D, Barclay W, Taylor G, Ward H, Darzi A, Cooke G, Chadeau M, Donnelly Cet al., 2022, Dynamics of a national Omicron SARS-CoV-2 epidemic during January 2022 in England, Nature Communications, Vol: 13, ISSN: 2041-1723

Rapid transmission of the SARS-CoV-2 Omicron variant has led to record-breaking case incidence rates around the world. Since May 2020, the REal-time Assessment of Community Transmission-1 (REACT-1) study tracked the spread of SARS-CoV-2 infection in England through RT-PCR of self-administered throat and nose swabs from randomly-selected participants aged 5 years and over. In January 2022, we found an overall weighted prevalence of 4.41% (n=102,174), three-fold higher than in November to December 2021; we sequenced 2,374 (99.2%) Omicron infections (19 BA.2), and only 19 (0.79%) Delta, with a growth rate advantage for BA.2 compared to BA.1 or BA.1.1. Prevalence was decreasing overall (reproduction number R=0.95, 95% credible interval [CrI], 0.93, 0.97), but increasing in children aged 5 to 17 years (R=1.13, 95% CrI, 1.09, 1.18). In England during January 2022, we observed unprecedented levels of SARS-CoV-2 infection, especially among children, driven by almost complete replacement of Delta by Omicron.

Journal article

Garcia-Gallo E, Merson L, Kennon K, Kelly S, Citarella BW, Fryer DV, Shrapnel S, Lee J, Duque S, Fuentes YV, Balan V, Smith S, Wei J, Goncalves BP, Russell CD, Sigfrid L, Dagens A, Olliaro PL, Baruch J, Kartsonaki C, Dunning J, Rojek A, Rashan A, Beane A, Murthy S, Reyes LFet al., 2022, ISARIC-COVID-19 dataset: a prospective, standardized, global dataset of patients hospitalized with COVID-19, Scientific Data, Vol: 9, Pages: 1-22, ISSN: 2052-4463

The International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) COVID-19 dataset is one of the largest international databases of prospectively collected clinical data on people hospitalized with COVID-19. This dataset was compiled during the COVID-19 pandemic by a network of hospitals that collect data using the ISARIC-World Health Organization Clinical Characterization Protocol and data tools. The database includes data from more than 705,000 patients, collected in more than 60 countries and 1,500 centres worldwide. Patient data are available from acute hospital admissions with COVID-19 and outpatient follow-ups. The data include signs and symptoms, pre-existing comorbidities, vital signs, chronic and acute treatments, complications, dates of hospitalization and discharge, mortality, viral strains, vaccination status, and other data. Here, we present the dataset characteristics, explain its architecture and how to gain access, and provide tools to facilitate its use.

Journal article

Eales O, Martins LDO, Page AJ, Wang H, Bodinier B, Tang D, Haw D, Jonnerby J, Atchison C, Ashby D, Barclay W, Taylor G, Cooke G, Ward H, Darzi A, Riley S, Elliott P, Donnelly CA, Chadeau-Hyam Met al., 2022, Dynamics of competing SARS-CoV-2 variants during the Omicron epidemic in England, Nature Communications, Vol: 13, ISSN: 2041-1723

The SARS-CoV-2 pandemic has been characterised by the regular emergence of genomic variants. With natural and vaccine-induced population immunity at high levels, evolutionary pressure favours variants better able to evade SARS-CoV-2 neutralising antibodies. The Omicron variant (first detected in November 2021) exhibited a high degree of immune evasion, leading to increased infection rates worldwide. However, estimates of the magnitude of this Omicron wave have often relied on routine testing data, which are prone to several biases. Using data from the REal-time Assessment of Community Transmission-1 (REACT-1) study, a series of cross-sectional surveys assessing prevalence of SARS-CoV-2 infection in England, we estimated the dynamics of England’s Omicron wave (from 9 September 2021 to 1 March 2022). We estimate an initial peak in national Omicron prevalence of 6.89% (5.34%, 10.61%) during January 2022, followed by a resurgence in SARS-CoV-2 infections as the more transmissible Omicron sub-lineage, BA.2 replaced BA.1 and BA.1.1. Assuming the emergence of further distinct variants, intermittent epidemics of similar magnitudes may become the ‘new normal’.

Journal article

Eales O, Wang H, Bodinier B, Haw D, Jonnerby J, Atchison C, Ashby D, Barclay W, Taylor G, Cooke G, Ward H, Darzi A, Riley S, Chadeau M, Donnelly C, Elliott Pet al., 2022, SARS-CoV-2 lineage dynamics in England from September to November 2021: high diversity of Delta sub-lineages and increased transmissibility of AY.4.2, BMC Infectious Diseases, Vol: 22, ISSN: 1471-2334

Background: Since the emergence of SARS-CoV-2, evolutionary pressure has driven large increases in the transmissibility of the virus. However, with increasing levels of immunity through vaccination and natural infection the evolutionary pressure will switch towards immune escape. Genomic surveillance in regions of high immunity is crucial in detecting emerging variants that can more successfully navigate the immune landscape. Methods: We present phylogenetic relationships and lineage dynamics within England (a country with high levels of immunity), as inferred from a random community sample of individuals who provided a self-administered throat and nose swab for rt-PCR testing as part of the REal-time Assessment of Community Transmission-1 (REACT-1) study. During round 14 (9 September - 27 September 2021) and 15 (19 October - 5 November 2021) lineages were determined for 1322 positive individuals, with 27.1% of those which reported their symptom status reporting no symptoms in the previous month.Results: We identified 44 unique lineages, all of which were Delta or Delta sub-lineages, and found a reduction in their mutation rate over the study period. The proportion of the Delta sub-lineage AY.4.2 was increasing, with a reproduction number 15% (95% CI, 8%-23%) greater than the most prevalent lineage, AY.4. Further, AY.4.2 was less associated with the most predictive COVID-19 symptoms (p = 0.029) and had a reduced mutation rate (p = 0.050). Both AY.4.2 and AY.4 were found to be geographically clustered in September but this was no longer the case by late October/early November, with only the lineage AY.6 exhibiting clustering towards the South of England.Conclusions: As SARS-CoV-2 moves towards endemicity and new variants emerge, genomic data obtained from random community samples can augment routine surveillance data without the potential biases introduced due to higher sampling rates of symptomatic individuals.

Journal article

Atchison C, Moshe M, Brown J, Whitaker M, Wong N, Bharath A, McKendry R, Darzi A, Ashby D, Donnelly C, Riley S, Elliott P, Barclay W, Cooke G, Ward Het al., 2022, Validity of self-testing at home with rapid SARS-CoV-2 antibody detection by lateral flow immunoassay, Publisher: medRxiv

<h4>ABSTRACT</h4> <h4>Background</h4> Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody lateral flow immunoassays (LFIA) can be carried out in the home and have been used as an affordable and practical approach to large-scale antibody prevalence studies. However, assay performance differs from that of high-throughput laboratory-based assays which can be highly sensitive. We explore LFIA performance under field conditions compared to laboratory-based ELISA and assess the potential of LFIAs to identify people who lack functional antibodies following infection or vaccination. <h4>Methods</h4> Field evaluation of a self-administered LFIA test (Fortress, NI) among 3758 participants from the REal-time Assessment of Community Transmission-2 (REACT-2) study in England selected based on vaccination history and previous LFIA result to ensure a range of antibody titres. In July 2021, participants performed, at home, a self-administered LFIA on finger-prick blood, reported and submitted a photograph of the result, and provided a self-collected capillary blood sample (Tasso-SST) for serological assessment of IgG antibodies to the spike protein using the Roche Elecsys® Anti-SARS-CoV-2 assay. We compared the self-administered and reported LFIA result to the quantitative Roche assay and checked the reading of the LFIA result with an automated image analysis (ALFA). In a subsample of 250 participants, we compared the results to live virus neutralisation. <h4>Results</h4> Almost all participants (3593/3758, 95.6%) had been vaccinated or reported prior infection, with most having received one (862, 22.9%) or two (2430, 64.7%) COVID-19 vaccine doses. Overall, 2777/3758 (73.9%) were positive on self-reported LFIA, 2811/3457 (81.3%) positive by LFIA when ALFA-reported, and 3622/3758 (96.4%) positive on Roche anti-S (using the manufacturer reference standard threshold for positivity of 0.8 U ml -1 ). Live virus neutra

Working paper

Williams LR, Ferguson NM, Donnelly CA, Grassly NCet al., 2022, Measuring vaccine efficacy against infection and disease in clinical trials: sources and magnitude of bias in COVID-19 vaccine efficacy estimates, Clinical Infectious Diseases, Vol: 75, Pages: e764-e773, ISSN: 1058-4838

BACKGROUND: Phase III trials have estimated COVID-19 vaccine efficacy (VE) against symptomatic and asymptomatic infection. We explore the direction and magnitude of potential biases in these estimates and their implications for vaccine protection against infection and against disease in breakthrough infections. METHODS: We developed a mathematical model that accounts for natural and vaccine-induced immunity, changes in serostatus and imperfect sensitivity and specificity of tests for infection and antibodies. We estimated expected biases in VE against symptomatic, asymptomatic and any SARS͏CoV2 infections and against disease following infection for a range of vaccine characteristics and measurement approaches, and the likely overall biases for published trial results that included asymptomatic infections. RESULTS: VE against asymptomatic infection measured by PCR or serology is expected to be low or negative for vaccines that prevent disease but not infection. VE against any infection is overestimated when asymptomatic infections are less likely to be detected than symptomatic infections and the vaccine protects against symptom development. A competing bias towards underestimation arises for estimates based on tests with imperfect specificity, especially when testing is performed frequently. Our model indicates considerable uncertainty in Oxford-AstraZeneca ChAdOx1 and Janssen Ad26.COV2.S VE against any infection, with slightly higher than published, bias-adjusted values of 59.0% (95% uncertainty interval [UI] 38.4 to 77.1) and 70.9% (95% UI 49.8 to 80.7) respectively. CONCLUSIONS: Multiple biases are likely to influence COVID-19 VE estimates, potentially explaining the observed difference between ChAdOx1 and Ad26.COV2.S vaccines. These biases should be considered when interpreting both efficacy and effectiveness study results.

Journal article

Penn MJ, Donnelly CA, 2022, Asymptotic analysis of optimal vaccination policies

<jats:title>Abstract</jats:title><jats:p>Targeted vaccination policies can have a significant impact on the number of infections and deaths in an epidemic. However, optimising such policies is complicated and the resultant solution may be difficult to explain to policy-makers and to the public. The key novelty of this paper is a derivation of the leading order optimal vaccination policy under multi-group SIR (Susceptible-Infected-Recovered) dynamics in two different cases. Firstly, it considers the case of a small vulnerable subgroup in a population and shows that (in the asymptotic limit) it is optimal to vaccinate this group first, regardless of the properties of the other groups. Then, it considers the case of a small vaccine supply and transforms the optimal vaccination problem into a simple knapsack problem by linearising the final size equations. Both of these cases are then explored further through numerical examples which show that these solutions are also directly useful for realistic parameter values. Moreover, the findings of this paper give some general principles for optimal vaccination policies which will help policy-makers and the public to understand the reasoning behind optimal vaccination programs in more generic cases.</jats:p><jats:sec><jats:title>Author summary</jats:title><jats:p>The COVID-19 pandemic has illustrated the importance of vaccination programs in preventing infections and deaths from an epidemic. A common feature of vaccination programs across the world has been a prioritisation of different groups within each country’s population, particularly those who are more vulnerable to the disease. Finding the best priority order is crucial, but may be complicated and difficult to justify to policy-makers and the public. In this paper, we consider two extreme cases where the best prioritisation order can be mathematically derived. Firstly, we consider the case of a population with a very

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: limit=30&id=00308903&person=true&page=2&respub-action=search.html