Imperial College London

ProfessorCristinaLo Celso

Faculty of Natural SciencesDepartment of Life Sciences

Co-Director Centre for Haematology & Prof Stem Cell Biology
 
 
 
//

Contact

 

c.lo-celso

 
 
//

Location

 

548Sir Alexander Fleming BuildingSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Brown:2018:10.26508/lsa.201800061,
author = {Brown, E and Carlin, LM and Nerlov, C and Lo, Celso C and Poole, AW},
doi = {10.26508/lsa.201800061},
journal = {Life Science Alliance},
title = {Multiple membrane extrusion sites drive megakaryocyte migration into bone marrow blood vessels},
url = {http://dx.doi.org/10.26508/lsa.201800061},
volume = {1},
year = {2018}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Platelets, cells central to hemostasis and thrombosis, are formed from parent cell megakaryocytes. Whilst the process is highly efficient in vivo, our ability to generate them in vitro is still remarkably inefficient. We proposed that greater understanding of the process in vivo is needed and used an imaging approach, intravital correlative light-electron microscopy, to visualize platelet generation in bone marrow in the living mouse. In contrast to current understanding we found that most megakaryocytes enter the sinusoidal space as large protrusions rather than extruding fine proplatelet extensions. The mechanism for large protrusion migration also differed from that of proplatelet extension. In vitro, proplatelets extend by sliding of dense bundles of microtubules, whereas in vivo our data showed an absence of microtubule bundles in the large protrusion, but the presence of multiple fusion points between the internal membrane and the plasma membrane, at the leading edge of the protruding cell. Mass membrane fusion therefore drives megakaryocyte large protrusions into the sinusoid, significantly revising our understanding of the fundamental biology of platelet formation in vivo.
AU - Brown,E
AU - Carlin,LM
AU - Nerlov,C
AU - Lo,Celso C
AU - Poole,AW
DO - 10.26508/lsa.201800061
PY - 2018///
SN - 2575-1077
TI - Multiple membrane extrusion sites drive megakaryocyte migration into bone marrow blood vessels
T2 - Life Science Alliance
UR - http://dx.doi.org/10.26508/lsa.201800061
UR - https://www.ncbi.nlm.nih.gov/pubmed/30393781
UR - http://hdl.handle.net/10044/1/65944
VL - 1
ER -