Imperial College London

Dr Christian Malaga-Chuquitaype

Faculty of EngineeringDepartment of Civil and Environmental Engineering

Senior Lecturer
 
 
 
//

Contact

 

+44 (0)20 7594 5007c.malaga Website CV

 
 
//

Assistant

 

Ms Ruth Bello +44 (0)20 7594 6040

 
//

Location

 

322Skempton BuildingSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@inproceedings{Kibriya:2018,
author = {Kibriya, L and Malaga, Chuquitaype C and Kashani, M and Alexander, N},
title = {Numerical investigation of the nonlinear dynamic response of self-centring rocking frames},
year = {2018}
}

RIS format (EndNote, RefMan)

TY  - CPAPER
AB - Conventional seismic design standards are rooted in the notion of collapse-prevention to ensure life-safety during major seismic events. To this end, modern code-conforming buildings are designed to accept a certain level of damage during earthquakes. Nevertheless, this design philosophy does not explicitly address damage mitigation, which leads to substantial post-earthquake economic losses. Rocking post-tensioned frames are a highly sustainable seismic design solution which remains operational after an earthquake event. They capitalise on the use of: (i) unbonded post-tensioned strands to provide overturning resistance and self-centring action, and (ii) rocking (opening) joints at the column-foundation and beam-column connections. Preceding research has proposed modelling strategies to capture the highly nonlinear behaviour of rocking structures. Nevertheless, numerical modelling techniques generating frequency response functions for the study of the non-linear dynamic properties of post-tensioned rocking moment frames without sacrificial elements or external damping, are presently limited. Thus, it is imperative to develop modelling procedures which enable an accurate representation of the fundamental nonlinear dynamic behaviour of rocking frames over a range of ground-motion excitations. The physical model of a steel post-tensioned rocking frame, which has been formerly tested under static and dynamic conditions, is employed in this paper in order to validate a new advanced finite element framework. A numerical study is presented, which incorporates a one-storey model, and includes static and dynamic responses. The results are compared with experimental and discrete-element models, and generalizable modelling considerations are presented. It is shown that the proposed method encompasses a simplified modelling approach and effectively represents the complete nonlinear response of rocking moment-resisting frames.
AU - Kibriya,L
AU - Malaga,Chuquitaype C
AU - Kashani,M
AU - Alexander,N
PY - 2018///
TI - Numerical investigation of the nonlinear dynamic response of self-centring rocking frames
ER -