Imperial College London

ProfessorChristosMarkides

Faculty of EngineeringDepartment of Chemical Engineering

Professor of Clean Energy Technologies
 
 
 
//

Contact

 

+44 (0)20 7594 1601c.markides Website

 
 
//

Location

 

404ACE ExtensionSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@inproceedings{Guarracino,
author = {Guarracino, I and Freeman, J and Ekins-Daukes, N and Markides, CN},
title = {PERFORMANCE ASSESSMENT AND COMPARISON OF SOLAR ORC AND HYBRID PVT SYSTEMS FOR THE COMBINED DISTRIBUTED GENERATION OF DOMESTIC HEAT AND POWER},
url = {http://hdl.handle.net/10044/1/32640},
}

RIS format (EndNote, RefMan)

TY  - CPAPER
AB - Solar-thermal collectors and photovoltaic panels are effectivesolutions for the decarbonisation of electricity and hot waterprovision in dwellings. In this work, we provide the first insightfulcomparison of these two competing solar-energy technologies forthe provision of combined heating and power (CHP) in domesticapplications. The first such system is based on an array of hybridPV-Thermal (PVT) modules, while the second is based on a solarthermalcollector array of the same area (based on a constrainedroof-space) that provides a thermal-energy input to an organicRankine cycle (ORC) engine for electricity generation. Simulationresults of the annual operation of these two systems are presentedin two geographical regions: Larnaca, Cyprus (as an example of ahot, high-irradiance southern-European climate) and London, UK(as an example of a cooler, lower-irradiance northern-Europeanclimate). Both systems have a total collector array area of 15 m2,equivalent to the roof area of a single residence, with the solarORCsystem being associated with a lower initial investment cost(capex) that is expected to play a role in the economic comparisonbetween the two systems. The electrical and thermal outputs of thetwo systems are found to be highly dependent on location. ThePVT system is found to provide an annual electricity output of2090 kWhe yr-1in the UK, which increases to 3620 kWhe yr-1inCyprus. This is equivalent to annual averages of 240 and 410 We,respectively, or between 60% and 110% of household demand.The corresponding additional thermal (hot water) output alsoincreases, from 860 kWhth yr-1in the UK, to 1870 kWhth yr-1inCyprus. It is found that the solar-ORC system performance ishighly sensitive to the system configuration chosen; the particularconfiguration studied here is found to be limited by the amount ofrejected thermal energy that can be reclaimed for water heating.The maximum electrical output from the solar-ORC configurationexplored in this study is 450 kWhe yr-1(
AU - Guarracino,I
AU - Freeman,J
AU - Ekins-Daukes,N
AU - Markides,CN
TI - PERFORMANCE ASSESSMENT AND COMPARISON OF SOLAR ORC AND HYBRID PVT SYSTEMS FOR THE COMBINED DISTRIBUTED GENERATION OF DOMESTIC HEAT AND POWER
UR - http://hdl.handle.net/10044/1/32640
ER -