Imperial College London

ProfessorChristosMarkides

Faculty of EngineeringDepartment of Chemical Engineering

Professor of Clean Energy Technologies
 
 
 
//

Contact

 

+44 (0)20 7594 1601c.markides Website

 
 
//

Location

 

404ACE ExtensionSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Fatigati:2020:10.3390/en13215846,
author = {Fatigati, F and Vittorini, D and Wang, Y and Song, J and Markides, CN and Cipollone, R},
doi = {10.3390/en13215846},
journal = {Energies},
pages = {5846--5846},
title = {Design and operational control strategy for optimum off-design performance of an ORC plant for low-grade waste heat recovery},
url = {http://dx.doi.org/10.3390/en13215846},
volume = {13},
year = {2020}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - The applicability of organic Rankine cycle (ORC) technology to waste heat recovery (WHR) is currently experiencing growing interest and accelerated technological development. The utilization of low-to-medium grade thermal energy sources, especially in the presence of heat source intermittency in applications where the thermal source is characterized by highly variable thermodynamic conditions, requires a control strategy for off-design operation to achieve optimal ORC power-unit performance. This paper presents a validated comprehensive model for off-design analysis of an ORC power-unit, with R236fa as the working fluid, a gear pump, and a 1.5 kW sliding vane rotary expander (SVRE) for WHR from the exhaust gases of a light-duty internal combustion engine. Model validation is performed using data from an extensive experimental campaign on both the rotary equipment (pump, expander) and the remainder components of the plant, namely the heat recovery vapor generator (HRVH), condenser, reservoirs, and piping. Based on the validated computational platform, the benefits on the ORC plant net power output and efficiency of either a variable permeability expander or of sliding vane rotary pump optimization are assessed. The novelty introduced by this optimization strategy is that the evaluations are conducted by a numerical model, which reproduces the real features of the ORC plant. This approach ensures an analysis of the whole system both from a plant and cycle point of view, catching some real aspects that are otherwise undetectable. These optimization strategies are considered as a baseline ORC plant that suffers low expander efficiency (30%) and a large parasitic pumping power, with a backwork ratio (BWR) of up to 60%. It is found that the benefits on the expander power arising from a lower permeability combined with a lower energy demand by the pump (20% of BWR) for circulation of the working fluid allows a better recovery performance for the ORC plant with respect to t
AU - Fatigati,F
AU - Vittorini,D
AU - Wang,Y
AU - Song,J
AU - Markides,CN
AU - Cipollone,R
DO - 10.3390/en13215846
EP - 5846
PY - 2020///
SN - 1996-1073
SP - 5846
TI - Design and operational control strategy for optimum off-design performance of an ORC plant for low-grade waste heat recovery
T2 - Energies
UR - http://dx.doi.org/10.3390/en13215846
UR - https://www.mdpi.com/1996-1073/13/21/5846
UR - http://hdl.handle.net/10044/1/84126
VL - 13
ER -