Imperial College London

ProfessorChristosMarkides

Faculty of EngineeringDepartment of Chemical Engineering

Professor of Clean Energy Technologies
 
 
 
//

Contact

 

+44 (0)20 7594 1601c.markides Website

 
 
//

Location

 

404ACE ExtensionSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@inproceedings{Song:2021,
author = {Song, J and Olympios, A and Mersch, M and Sapin, P and Markides, C},
publisher = {ECOS},
title = {Integrated organic Rankine cycle (ORC) and heat pump (HP) systems for domestic heating},
url = {http://hdl.handle.net/10044/1/91990},
year = {2021}
}

RIS format (EndNote, RefMan)

TY  - CPAPER
AB - Space and water heating represent a significant share of the overall energy consumption in the domestic sector. Decarbonising heat, though challenging, is acknowledged as having a key role to play(as exemplifiedby the Domestic Renewable Heat Incentive launched in 2014 in the UK, amongst other)in achievingemissionsreduction targets andalleviatingproblems related to energy shortage and environmental deterioration. Novel, highly efficientheating technologies have attracted increasing interest in this context, in particular in regions with colderclimatesand higherheating demands. Specifically, thermally-driven heat-pumping technologies are a promising solution to meetingenergy-efficiency targets by increasing the effectiveheat-to-fuelratio(HFR)of heatingsystems. In this paper,thermally-driven integrated organic Rankine cycle (ORC) and heat pump (HP) systems are proposed for domestic heating applications, in which the ORC system is driven by heat from fuel (e.g., gas) combustion and generates power to drive an air-source vapour-compression HP system. A heat-transfer fluid is heatedin the condensers of the two sub-systems to the required temperature for heat provision. Two system configurations with reversed heat-transfer fluidflow directions are presented and compared. Suitable, lowglobal-warming-potential (GWP) working fluids for both the ORC and HP systems are considered and parametric optimisation is performed to determine optimal thermodynamic performanceand system layouts. In aconfiguration in whichthe heat-transfer fluidflows firstthroughthe HP condenser andthen through the ORC condenser in series,the HFRreaches values of 1.26-2.04 forair-source temperaturesranging from -15 to 15 °C and for heat provision temperaturesfrom 35 °C to 60 °C.Aperformance enhancement up to 8-19% relative to theconfiguration withthe heat-transfer fluidflowingin thereversedirection, i.e., through the ORC condenser and then theHP condenser in serie
AU - Song,J
AU - Olympios,A
AU - Mersch,M
AU - Sapin,P
AU - Markides,C
PB - ECOS
PY - 2021///
TI - Integrated organic Rankine cycle (ORC) and heat pump (HP) systems for domestic heating
UR - http://hdl.handle.net/10044/1/91990
ER -