Imperial College London

Professor Camille Petit

Faculty of EngineeringDepartment of Chemical Engineering

Professor of Materials Engineering
 
 
 
//

Contact

 

camille.petit Website

 
 
//

Location

 

506ACE ExtensionSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Shankar:2019:10.1021/acs.jpcc.8b11731,
author = {Shankar, R and Marchesini, S and Petit, C},
doi = {10.1021/acs.jpcc.8b11731},
journal = {Journal of Physical Chemistry C},
pages = {4282--4290},
title = {Enhanced hydrolytic stability of porous boron nitride via the control of crystallinity, porosity, and chemical composition},
url = {http://dx.doi.org/10.1021/acs.jpcc.8b11731},
volume = {123},
year = {2019}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Porous boron nitride is gaining significant attention for applications in molecular separations, photocatalysis, and drug delivery. All these areas call for a high degree of stability (or controlled stability) over a range of chemical environments, particularly under humid conditions. The hydrolytic stability of the various forms of boron nitride, including porous boron nitride, has been sparingly addressed in the literature. Here, we map the physical–chemical properties of the material to its hydrolytic stability for a range of conditions. Using analytical, imaging, and spectroscopic techniques, we identify the links between the hydrolytic instability of porous boron nitride and its limited crystallinity, high porosity, as well as the presence of oxygen atoms. To address this instability issue, we demonstrate that subjecting the material to a thermal treatment leads to the formation of crystalline domains of h-BN exhibiting a hydrophobic character. The heat-treated sample displays an enhanced hydrolytic stability, while maintaining a high porosity. This work provides an effective and simple approach to producing stable porous boron nitride structures and will progress the implementation of the material in applications involving interfacial phenomena.
AU - Shankar,R
AU - Marchesini,S
AU - Petit,C
DO - 10.1021/acs.jpcc.8b11731
EP - 4290
PY - 2019///
SN - 1932-7447
SP - 4282
TI - Enhanced hydrolytic stability of porous boron nitride via the control of crystallinity, porosity, and chemical composition
T2 - Journal of Physical Chemistry C
UR - http://dx.doi.org/10.1021/acs.jpcc.8b11731
UR - http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000459836900041&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
UR - http://hdl.handle.net/10044/1/69089
VL - 123
ER -