Imperial College London

DrDanielBalint

Faculty of EngineeringDepartment of Mechanical Engineering

Reader in Solid Mechanics
 
 
 
//

Contact

 

+44 (0)20 7594 7084d.balint Website CV

 
 
//

Location

 

519City and Guilds BuildingSouth Kensington Campus

//

Summary

 

Summary

Ph.D., Engineering Sciences, Harvard University, 2003
S.M., Applied Mathematics, Harvard University, 2001
B.S., Engineering Mechanics, Michigan State University, 1998

Prior to joining the faculty in 2006, Dr. Balint was a research associate in the Cambridge Centre for Micromechanics, Cambridge University (2003-2005), where he worked on modelling size effects in polycrystalline materials using planar discrete dislocation plasticity. Dr Balint has also worked as an engineer at Exponent, Inc. investigating civil disasters resulting from fatigue and overload fracture in metal structures, and studied the mechanical response of knee, hip and spinal implants in the human body using computational modeling.

Dr. Balint has expertise particularly in the micromechanics of crystalline materials, dislocation and defect modelling, multilayer thin film evolution, fracture and failure (e.g. thermal barrier coatings), and in developing novel metal forming methods. His training was in theoretical solid mechanics, with emphasis on thin films and fracture mechanics. 

Publications

Journals

Gurrutxaga-Lerma B, Shehadeh MA, Balint DS, et al., 2017, The effect of temperature on the elastic precursor decay in shock loaded FCC aluminium and BCC iron, International Journal of Plasticity, Vol:96, ISSN:0749-6419, Pages:135-155

Sernicola G, Giovannini T, Patel P, et al., 2017, In situ stable crack growth at the micron scale, Nature Communications, Vol:8, ISSN:2041-1723

Waheed S, Hao R, Bhowmik A, et al., 2017, A unifying scaling for the Bauschinger effect in highly confined thin films: a discrete dislocation plasticity study, Modelling and Simulation in Materials Science and Engineering, Vol:25, ISSN:0965-0393

Kaye MC, Balint D, Lin J, et al., 2017, Test-piece design for experimental and numerical evaluation of damage in relation to spatial triaxial stress inversion, International Journal of Damage Mechanics, Vol:26, ISSN:1056-7895, Pages:588-607

Conference

Shi Z, Wang Y, Lin J, et al., An Investigation, Using Standard Experimental Techniques, to Determine FLCs at Elevated Temperature for Aluminium Alloys, The 3rd International Conference on New Forming Technology

More Publications