Imperial College London

DrDanielBalint

Faculty of EngineeringDepartment of Mechanical Engineering

Reader in Solid Mechanics
 
 
 
//

Contact

 

+44 (0)20 7594 7084d.balint Website CV

 
 
//

Location

 

519City and Guilds BuildingSouth Kensington Campus

//

Summary

 

Summary

Ph.D., Engineering Sciences, Harvard, 2003
S.M., Applied Mathematics, Harvard, 2001
B.S., Engineering Mechanics, Michigan State, 1998

Prior to joining the faculty in 2006, Dr. Balint was a research associate in the Cambridge Centre for Micromechanics, Cambridge University (2003-2005), where he worked on modelling size effects in polycrystalline materials using planar discrete dislocation plasticity. Dr Balint has also worked as an engineer at Exponent, Inc. investigating civil disasters resulting from fatigue and overload fracture in metal structures, and studied the mechanical response of knee, hip and spinal implants in the human body using computational modeling.

Dr. Balint has expertise in multilayer thin film evolution, fracture and failure (e.g. thermal barrier coatings). His training was in theoretical solid mechanics, with emphasis on thin films and fracture mechanics. Dr. Balint''s current research interests include crystalline materials modelling, metal forming, superplasticity, failure and fracture of thin coatings  (including paints and artifact enamels) and orthopaedic biomechanics.

Publications

Journals

Gurrutxaga-Lerma B, Shehadeh M, Balint, et al., The effect of temperature on the elastic precursor decay in shock loaded FCC aluminium and BCC iron, International Journal of Plasticity, ISSN:1879-2154

Sernicola G, Giovannini T, Patel P, et al., In situ stable crack growth at the micron scale, Nature Communications, ISSN:2041-1723

Gurrutxaga-Lerma B, Balint DS, Dini D, et al., 2017, A Dynamic Discrete Dislocation Plasticity study of elastodynamic shielding of stationary cracks, Journal of the Mechanics and Physics of Solids, Vol:98, ISSN:0022-5096, Pages:1-11

Junyi L, Balint DS, 2017, Optimal shunt parameters for maximising wave attenuation with periodic piezoelectric patches, Journal of Intelligent Material Systems and Structures, Vol:28, ISSN:1045-389X, Pages:108-123

Conference

Shi Z, Wang Y, Lin J, et al., An Investigation, Using Standard Experimental Techniques, to Determine FLCs at Elevated Temperature for Aluminium Alloys, The 3rd International Conference on New Forming Technology

More Publications