Imperial College London

DrDimitraGeorgiadou

Faculty of EngineeringDepartment of Materials

Research Associate
 
 
 
//

Contact

 

d.georgiadou

 
 
//

Location

 

101Royal School of MinesSouth Kensington Campus

//

Summary

 

Summary

I am currently a Research Associate in the Department of Materials, Imperial College London, in the group of Dr Martyn McLachlan. I work on an EPSRC Knowledge Transfer Secondment project, in close collaboration with PragmatIC, a UK-based SME that develops ultra low cost flexible electronics for smart packaging applications based on RFID and NFC technologies.

I received my PhD in Chemical Engineering (Photochemistry / Organic Electronics) from the National Technical University of Athens, Greece. Before that I had obtained a Master’s Degree in Advanced Materials Science jointly from the Technical University of Munich, Ludvig-Maximilians University of Munich and University of Augsburg, while I also hold a Degree in Chemical Engineering from the National Technical University of Athens. I have gained industrial experience through internships in Procter&Gamble, Italy, and Schreiner Group, Germany.

Prior to my current position I was a Marie Sklodowska-Curie Fellow in the Experimental Solid State Physics group (EXSS) at the Blackett Laboratory, Department of Physics, Imperial College, in the group of Professor Thomas Anthopoulos. The main focus of “A-LITHIA” project was to explore the scalability potential of a novel patterning technique, adhesion lithography (a-Lith), into large area flexible substrates. In parallel, I followed a multidisciplinary research trajectory aiming at the development of high performance co-planar nano-scale electronic devices on the a-Lith patterned substrates, the architectures and dimensions of which would be difficult or far too expensive to obtain with traditional patterning techniques (e.g. e-beam lithography).

Targeted proof-of-concept applications included:

  • radio frequency rectifying Schottky diodes
  • light-emitting diodes (LEDs)
  • photodetectors
  • non-volatile ferroelectric tunnel junction memories
  • molecular nano-junctions

My broader research interests involve the following:

  • photochemical tuning of emission colour of fluorescent and phosphorescent emitters for application in polymer light-emitting diodes (PLEDs)
  • solution-processed organic and inorganic materials used as interfacial layers in PLEDs and organic photovoltaics (OPVs)
  • synthesis of mesoporous nanocrystalline TiO2 for application in dye sensitized solar cells (DSSCs)

Selected Publications

Journal Articles

Semple J, Georgiadou DG, Wyatt-Moon G, et al., 2018, Large-area plastic nanogap electronics enabled by adhesion lithography, Npj Flexible Electronics, Vol:2, ISSN:2397-4621

Wyatt-Moon G, Georgiadou DG, Semple J, et al., 2017, Deep Ultraviolet Copper(I) Thiocyanate (CuSCN) Photodetectors Based on Coplanar Nanogap Electrodes Fabricated via Adhesion Lithography, ACS Applied Materials & Interfaces, Vol:9, ISSN:1944-8244, Pages:41965-41972

Semple J, Georgiadou DG, Wyatt-Moon G, et al., 2017, Flexible diodes for radio frequency (RF) electronics: a materials perspective, Semiconductor Science and Technology, Vol:32, ISSN:0268-1242

Georgiadou DG, Semple J, Anthopoulos TD, 2017, Adhesion lithography for fabrication of printed radio-frequency diodes, Spie Newsroom

Semple J, Wyatt-Moon G, Georgiadou DG, et al., 2017, Semiconductor-Free Nonvolatile Resistive Switching Memory Devices Based on Metal Nanogaps Fabricated on Flexible Substrates via Adhesion Lithography, IEEE Transactions on Electron Devices, Vol:64, ISSN:0018-9383, Pages:1973-1980

Vasilopoulou M, Georgiadou DG, Soultati A, et al., 2014, Atomic-Layer-Deposited Aluminum and Zirconium Oxides for Surface Passivation of TiO2 in High-Efficiency Organic Photovoltaics, Advanced Energy Materials, Vol:4, ISSN:1614-6832

Vasilopoulou M, Douvas AM, Georgiadou DG, et al., 2014, Large work function shift of organic semiconductors inducing enhanced interfacial electron transfer in organic optoelectronics enabled by porphyrin aggregated nanostructures, Nano Research, Vol:7, ISSN:1998-0124, Pages:679-693

Georgiadou DG, Vasilopoulou M, Palilis LC, et al., 2013, All-Organic Sulfonium Salts Acting as Efficient Solution Processed Electron Injection Layer for PLEDs, ACS Applied Materials & Interfaces, Vol:5, ISSN:1944-8244, Pages:12346-12354

Vasilopoulou M, Dimitrakis P, Georgiadou DG, et al., 2013, Emergence of ambient temperature ferroelectricity in meso-tetrakis(1-methylpyridinium-4-yl)porphyrin chloride thin films, Applied Physics Letters, Vol:103, ISSN:0003-6951

Palilis LC, Vasilopoulou M, Douvas AM, et al., 2013, Solution processable tungsten polyoxometalate as highly effective cathode interlayer for improved efficiency and stability polymer solar cells, Solar Energy Materials and Solar Cells, Vol:114, ISSN:0927-0248, Pages:205-213

Vasilopoulou M, Douvas AM, Georgiadou DG, et al., 2012, The Influence of Hydrogenation and Oxygen Vacancies on Molybdenum Oxides Work Function and Gap States for Application in Organic Optoelectronics, Journal of the American Chemical Society, Vol:134, ISSN:0002-7863, Pages:16178-16187

Georgiadou DG, Palilis LC, Vasilopoulou M, et al., 2011, Incorporating triphenyl sulfonium salts in polyfluorene PLEDs: an all-organic approach to improved charge injection, Journal of Materials Chemistry, Vol:21, ISSN:0959-9428, Pages:9296-9301

Vasilopoulou M, Palilis LC, Georgiadou DG, et al., 2011, Reduction of Tungsten Oxide: A Path Towards Dual Functionality Utilization for Efficient Anode and Cathode Interfacial Layers in Organic Light-Emitting Diodes, Advanced Functional Materials, Vol:21, ISSN:1616-301X, Pages:1489-1497

Szeifert JM, Fattakhova-Rohlfing D, Georgiadou D, et al., 2009, "Brick and Mortar" Strategy for the Formation of Highly Crystalline Mesoporous Titania Films from Nanocrystalline Building Blocks, Chemistry of Materials, Vol:21, ISSN:0897-4756, Pages:1260-1265

Vasilopoulou M, Georgiadou D, Pistolis G, et al., 2007, Tuning the emitting color of organic light-emitting diodes through photochemically induced transformations: Towards single-layer, patterned, full-color displays and white-lighting applications, Advanced Functional Materials, Vol:17, ISSN:1616-301X, Pages:3477-3485

More Publications