Imperial College London

Dr Dan Goodman

Faculty of EngineeringDepartment of Electrical and Electronic Engineering

Lecturer
 
 
 
//

Contact

 

+44 (0)20 7594 6264d.goodman Website

 
 
//

Location

 

1001Electrical EngineeringSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

38 results found

Goodman DF, Brette R, 2010, Spike-timing-based computation in sound localization, PLOS Computational Biology, Vol: 6, ISSN: 1553-734X

Spike timing is precise in the auditory system and it has been argued that it conveys information about auditory stimuli, in particular about the location of a sound source. However, beyond simple time differences, the way in which neurons might extract this information is unclear and the potential computational advantages are unknown. The computational difficulty of this task for an animal is to locate the source of an unexpected sound from two monaural signals that are highly dependent on the unknown source signal. In neuron models consisting of spectro-temporal filtering and spiking nonlinearity, we found that the binaural structure induced by spatialized sounds is mapped to synchrony patterns that depend on source location rather than on source signal. Location-specific synchrony patterns would then result in the activation of location-specific assemblies of postsynaptic neurons. We designed a spiking neuron model which exploited this principle to locate a variety of sound sources in a virtual acoustic environment using measured human head-related transfer functions. The model was able to accurately estimate the location of previously unknown sounds in both azimuth and elevation (including front/back discrimination) in a known acoustic environment. We found that multiple representations of different acoustic environments could coexist as sets of overlapping neural assemblies which could be associated with spatial locations by Hebbian learning. The model demonstrates the computational relevance of relative spike timing to extract spatial information about sources independently of the source signal.

Journal article

Goodman DFM, 2010, Code Generation: A Strategy for Neural Network Simulators, NEUROINFORMATICS, Vol: 8, Pages: 183-196, ISSN: 1539-2791

Journal article

Rossant C, Goodman DF, Platkiewicz J, Brette Ret al., 2010, Automatic fitting of spiking neuron models to electrophysiological recordings, Frontiers in Neuroinformatics, Vol: 4, ISSN: 1662-5196

Spiking models can accurately predict the spike trains produced by cortical neurons in response to somatically injected currents. Since the specific characteristics of the model depend on the neuron, a computational method is required to fit models to electrophysiological recordings. The fitting procedure can be very time consuming both in terms of computer simulations and in terms of code writing. We present algorithms to fit spiking models to electrophysiological data (time-varying input and spike trains) that can run in parallel on graphics processing units (GPUs). The model fitting library is interfaced with Brian, a neural network simulator in Python. If a GPU is present it uses just-in-time compilation to translate model equations into optimized code. Arbitrary models can then be defined at script level and run on the graphics card. This tool can be used to obtain empirically validated spiking models of neurons in various systems. We demonstrate its use on public data from the INCF Quantitative Single-Neuron Modeling 2009 competition by comparing the performance of a number of neuron spiking models.

Journal article

Goodman DF, Brette R, 2009, The brian simulator, Frontiers in Neuroscience, Vol: 3, Pages: 192-197, ISSN: 1662-4548

"Brian" is a simulator for spiking neural networks (http://www.briansimulator.org). The focus is on making the writing of simulation code as quick and easy as possible for the user, and on flexibility: new and non-standard models are no more difficult to define than standard ones. This allows scientists to spend more time on the details of their models, and less on their implementation. Neuron models are defined by writing differential equations in standard mathematical notation, facilitating scientific communication. Brian is written in the Python programming language, and uses vector-based computation to allow for efficient simulations. It is particularly useful for neuroscientific modelling at the systems level, and for teaching computational neuroscience.

Journal article

Goodman D, Brette R, 2008, Brian: a simulator for spiking neural networks in python, Frontiers in Neuroinformatics, Vol: 2, ISSN: 1662-5196

"Brian" is a new simulator for spiking neural networks, written in Python (http://brian. di.ens.fr). It is an intuitive and highly flexible tool for rapidly developing new models, especially networks of single-compartment neurons. In addition to using standard types of neuron models, users can define models by writing arbitrary differential equations in ordinary mathematical notation. Python scientific libraries can also be used for defining models and analysing data. Vectorisation techniques allow efficient simulations despite the overheads of an interpreted language. Brian will be especially valuable for working on non-standard neuron models not easily covered by existing software, and as an alternative to using Matlab or C for simulations. With its easy and intuitive syntax, Brian is also very well suited for teaching computational neuroscience.

Journal article

Goodman DFM, Stimberg M, Brette R, 2008, Brian simulator

Brian is a simulator for spiking neural networks available on almost all platforms. The motivation for this project is that a simulator should not only save the time of processors, but also the time of scientists.Brian is easy to learn and use, highly flexible and easily extensible. The Brian package itself and simulations using it are all written in the Python programming language, which is an easy, concise and highly developed language with many advanced features and development tools, excellent documentation and a large community of users providing support and extension packages.

Software

Goodman D, 2006, Spirals in the boundary of slices of quasi-fuchsian space, Conformal Geometry and Dynamics, Vol: 10, Pages: 136-158

We prove that the Bers and Maskit slices of the quasi-Fuchsian space of a once-punctured torus have a dense, uncountable set of points in their boundaries about which the boundary spirals infinitely. © 2006 American Mathematical Society.

Journal article

Goodman DFM, Winter IM, Léger AC, de Cheveigné A, Lorenzi Cet al., Modelling firing regularity in the ventral cochlear nucleus: mechanisms, and effects of stimulus level and synaptopathy, Publisher: Cold Spring Harbor Laboratory

<jats:title>Abstract</jats:title><jats:p>The auditory system processes temporal information at multiple scales, and disruptions to this temporal processing may lead to deficits in auditory tasks such as detecting and discriminating sounds in a noisy environment. Here, a modelling approach is used to study the temporal regularity of firing by chopper cells in the ventral cochlear nucleus, in both the normal and impaired auditory system. Chopper cells, which have a strikingly regular firing response, divide into two classes, sustained and transient, based on the time course of this regularity. Several hypotheses have been proposed to explain the behaviour of chopper cells, and the difference between sustained and transient cells in particular. However, there is no conclusive evidence so far. Here, a reduced mathematical model is developed and used to compare and test a wide range of hypotheses with a limited number of parameters. Simulation results show a continuum of cell types and behaviours: chopper-like behaviour arises for a wide range of parameters, suggesting that multiple mechanisms may underlie this behaviour. The model accounts for systematic trends in regularity as a function of stimulus level that have previously only been reported anecdotally. Finally, the model is used to predict the effects of a reduction in the number of auditory nerve fibres (deafferentation due to, for example, cochlear synaptopathy). An interactive version of this paper in which all the model parameters can be changed is available online.</jats:p><jats:sec><jats:title>Highlights</jats:title><jats:p><jats:list list-type="bullet"><jats:list-item><jats:p>A low parameter model reproduces chopper cell firing regularity</jats:p></jats:list-item><jats:list-item><jats:p>Multiple factors can account for sustained vs transient chopper cell response</jats:p></jats:list-item><jats:

Working paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00741013&limit=30&person=true&page=2&respub-action=search.html