Imperial College London

DrDianaIruretagoyena Ferrer

Faculty of EngineeringDepartment of Chemical Engineering

Academic Visitor
 
 
 
//

Contact

 

d.iruretagoyena09 Website

 
 
//

Location

 

Roderic Hill BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

18 results found

Iruretagoyena D, Fennell P, Pini R, 2023, Adsorption of CO2 and N2 on bimetallic Mg-Al hydrotalcites and Z-13X zeolites under high pressure and moderate temperatures, CHEMICAL ENGINEERING JOURNAL ADVANCES, Vol: 13, ISSN: 2666-8211

Journal article

Xia D, Li H, Mannering J, Huang P, Zheng X, Kulak A, Baker D, Iruretagoyena D, Menzel Ret al., 2020, Electrically Heatable Graphene Aerogels as Nanoparticle Supports in Adsorptive Desulfurization and High-Pressure CO<sub>2</sub>Capture, ADVANCED FUNCTIONAL MATERIALS, Vol: 30, ISSN: 1616-301X

Journal article

Iruretagoyena D, Bikane K, Sunny N, Lu H, Kazarian SG, Chadwick D, Pini R, Shah Net al., 2020, Enhanced selective adsorption desulfurization on CO2 and steam treated activated carbons: Equilibria and kinetics, Chemical Engineering Journal, Vol: 379, Pages: 1-11, ISSN: 1385-8947

Activated carbons (ACs) show great potential for selective adsorption removal of sulfur (SARS) from hydrocarbon fuels but require improvements in uptake and selectivity. Moreover, systematic equilibria and kinetic analyses of ACs for desulfurization are still lacking. This work examines the influence of modifying a commercial-grade activated carbon (AC) by CO2 and steam treatment for the selective adsorption removal of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) at 323 K. An untreated AC and a charcoal Norit carbon (CN) were used for comparative purposes. Physicochemical characterization of the samples was carried out by combining N2-physisorption, X-ray diffractometry, microscopy, thermogravimetric and infrared analyses. The steam and CO2 treated ACs exhibited higher sulfur uptakes than the untreated AC and CN samples. The steam treated AC appears to be especially effective to remove sulfur, showing a remarkable sulfur uptake (~24 mgS·gads−1 from a mixture of 1500 ppmw of DBT and 1500 ppm 4,6-DMDBT) due to an increased surface area and microporosity. The modified ACs showed similar capacities for both DBT and the sterically hindered 4,6-DMDBT molecules. In addition, they were found to be selective in the presence of sulfur-free aromatics and showed good multicycle stability. Compared to other adsorbents, the modified ACs exhibited relatively high adsorption capacities. The combination of batch and fixed bed measurements revealed that the adsorption sites of the samples are characterized as heterogeneous due to the better fit to the Freundlich isotherm. The kinetic breakthrough profiles were described by the linear driving force (LDF) model.

Journal article

d'Amore F, Sunny N, Iruretagoyena D, Bezzo F, Shah Net al., 2019, European supply chains for carbon capture, transport and sequestration, with uncertainties in geological storage capacity: Insights from economic optimisation, Computers and Chemical Engineering, Vol: 129, Pages: 1-18, ISSN: 0098-1354

Carbon capture and storage is widely recognised as a promising technology for decarbonising the energy and industrial sector. An integrated assessment of technological options is required for effective deployment of large-scale infrastructures between the nodes of production and sequestration of CO2. Additionally, design challenges due to uncertainties in the effective storage availability of sequestration basins must be tackled for the optimal planning of long-lived infrastructure. The objective of this study is to quantify the financial risks arising from geological uncertainties in European supply chain networks, whilst also providing a tool for minimising storage risk exposure. For this purpose, a methodological approach utilising mixed integer linear optimisation is developed and subsequent analysis demonstrates that risks arising from geological volumes are negligible compared to the overall network costs (always <1% of total cost) although they may be significant locally. The model shows that a slight increase in transport (+11%) and sequestration (+5%) costs is required to obtain a resilient supply chain, but the overall investment is substantially unchanged (max. +0.2%) with respect to a risk-neutral network. It is shown that risks in storage capacities can be minimised via careful design of the network, through distributing the investment for storage across Europe, and incorporating operational flexibility.

Journal article

d'Amore F, Sunny N, Iruretagoyena D, Bezzo F, Shah Net al., 2019, Optimising European supply chains for carbon capture, transport and sequestration, including uncertainty on geological storage availability, Editors: Kiss, Zondervan, Lakerveld, Ozkan, Publisher: ELSEVIER SCIENCE BV, Pages: 199-204, ISBN: 978-0-12-819939-8

Book chapter

Iruretagoyena Ferrer D, Sunny N, Chadwick D, Mac Dowell N, Shah Net al., 2018, Towards a low carbon economy via sorption enhanced water gas shift and alcohol reforming

Book chapter

Iruretagoyena Ferrer D, Hellgardt K, Chadwick D, 2018, Towards autothermal hydrogen production by sorption-enhanced water gas shift and methanol reforming: a thermodynamic analysis, International Journal of Hydrogen Energy, Vol: 43, Pages: 4211-4222, ISSN: 0360-3199

Hydrogen production by the water gas shift reaction (WGS) is equilibrium limited. In the current study, we demonstrate that the overall efficiency of the WGS can be improved by co-feeding methanol and removing CO2 in situ. The thermodynamics of the water gas shift and methanol reforming/WGS (methanol-to-shift, MtoS) reactions for H2 production alone and with simultaneous CO2 adsorption (sorption-enhanced, SEWGS and SEMtoS) were studied using a non-stoichiometric approach based on the minimisation of the Gibbs free energy. A typical composition of the effluent from a steam methane reformer was used for the shift section. The effects of temperature (450–750 K), pressure (5–30 barg), steam and methanol addition, fraction of CO2 adsorption (0–95%) and energy efficiency of the shift systems have been investigated. Adding methanol to the feed facilitates autothermal operation of the shift unit, with and without CO2 removal, and enhances significantly the amount of H2 produced. For a set methanol and CO input, the MtoS and SEMtoS systems show a maximum productivity of H2 between 523 and 593 K due to the increasing limitation of the exothermic shift reaction while the endothermic methanol steam reforming is no longer limited above 593 K. The heat of adsorption of CO2 was found to make only a small difference to the H2 production or the autothermal conditions.

Journal article

Peng J, Iruretagoyena Ferrer D, Chadwick D, 2017, Hydrotalcite/SBA15 composites for pre-combustion CO2 capture: CO2, Journal of Co2 Utilization, Vol: 24, Pages: 73-80, ISSN: 2212-9820

Hydrotalcite-like compounds (HT) show potential as CO2 adsorbent materials for pre-combustion CO2 capture applications, but require improvements in stability, adsorption capacity and kinetics. In this study, HT/SBA15 hybrids (with different Mg/Al ratios varying from 0.3 to 3) have been synthesised using a two-stage grafting method to coat a mesoporous SBA15 with hydrotalcite layers. The HT/SBA15 hybrids showed significant improvement in intrinsic CO2 uptake (per mass of HT), initial uptake rate, and multicycle stability compared to unsupported HT. Compared to previously reported nanostructured carbon supports (e.g. CNF, MWCNTs), the HT/SBA15 hybrids were found to be more thermally stable and exhibit comparable adsorption uptake and rates. In particular, the use of SBA15 as a support is shown to prevent the gradual loss in weight from thermal decomposition observed for HT/MWCNT or HT/GO composites over extended cycling.

Journal article

Iruretagoyena Ferrer D, 2017, Selective Sulfur Removal from Liquid Fuels Using Nanostructured Adsorbents, Nanotechnology in Oil and Gas Industries. Topics in Mining, Metallurgy and Materials Engineering., Pages: 133-150, ISBN: 978-3-319-60629-3

In recent years, there has been an increasing pressure to develop strategies to reduce the level of sulfur in transportation fuels due to stringent environmental regulations. Currently, hydrodesulfurization (HDS) is the most mature (pre-FCC) technology to remove sulfur from gasoline and diesel. However, conventional HDS can hardly produce ultra-low sulfur fuels while maintaining important fuel requirements (i.e., oxygen content, overall aromatic content, olefin content for gasoline, and cetane number for diesel). As a consequence, improvement of existing HDS processes and development of new desulfurization technologies is needed. In this regard, selective adsorption removal of sulfur (SARS) is a promising emerging approach for ultra-deep desulfurization of refinery streams by means of solid adsorbents. Contrary to HDS, SARS is usually carried out at low temperatures and pressures with minimal hydrogen consumption, preventing olefin hydrogenation and thus maintaining the properties of the fuels. This chapter presents a general overview of SARS. Emphasis is given to the use of nanostructured materials as sulfur adsorbents. Section 5.1 introduces the chapter presenting a general description of HDS, SARS and other emerging desulfurization technologies. Section 5.2 describes the two main groups of SARS (adsorption desulfurization and reactive adsorption desulfurization). Subsequently, the three main mechanisms for sulfur adsorption (π-complexation, direct sulfur–adsorption site interactions, and bulk incorporation in reactive adsorption desulfurization) are reviewed. Section 5.3 gives an overview of relevant literature concerning the use of promising groups of nanostructured adsorbents for SARS including zeolites, MOFs, mesoporous silicas, and carbon-nanostructured adsorbents. Finally, Sect. 5.4 gives some concluding remarks.

Book chapter

Graca I, Iruretagoyena D, Chadwick D, 2017, Glucose isomerisation into fructose over magnesium-impregnated NaY zeolite catalysts, Applied Catalysis B: Environmental, Vol: 206, Pages: 434-443, ISSN: 0926-3373

The performance of magnesium-impregnated NaY zeolite catalysts for the glucose isomerisation into fructose at 100 °C has been evaluated. Although crystallinity and textural properties of the zeolites are reduced through Mg addition, glucose conversion improves (6–49%) by increasing magnesium content (0–15 wt.%) due to an increase of the number of basic sites. Conversely, selectivity to fructose drops (96–66%). Nevertheless, good fructose yields were still reached with 10 and 15 wt.% of magnesium (about 32%), being similar or even higher than those found for a commercial hydrotalcite and a pure magnesium oxide. Catalysts lose performance through carbon retention and cations leaching. Deactivation of magnesium-based zeolites was further investigated by consecutive reaction runs. If no regeneration of the catalyst is performed, the activity of the zeolites decreases mainly as a result of cations leaching, the effect reducing with the number of runs. Regeneration allows the catalyst to recover almost totally its initial activity. Interestingly, used samples show higher fructose selectivity due to the additional pore opening resulting from cations leaching and/or carbon removal. Cations leaching results in a homogeneous catalytic reaction which is most significant for the highest magnesium content. Magnesium-based NaY zeolites are revealed as potential catalysts for glucose isomerisation into fructose with high fructose productivities and good performance in consecutive reactions combined with intermediate regeneration.

Journal article

Menzel R, Iruretagoyena D, Wang Y, Bawaked SM, Mokhtar M, Al-Thabaiti SA, Basahel SN, Shaffer MSPet al., 2016, Graphene oxide/mixed metal oxide hybrid materials for enhanced adsorption desulfurization of liquid hydrocarbon fuels, Fuel, Vol: 181, Pages: 531-536, ISSN: 0016-2361

A series of mixed metal oxides (MMOs) adsorbents (MgAl-, CuAl- and CoAl-MMOs) were supported on graphene oxide (GO) through in-situ precipitation of layered double hydroxides (LDHs) onto exfoliated GO, followed by thermal conversion. The study shows that GO is an excellent support for the LDH-derived MMOs due to matching geometry and charge complementarity, resulting in a strong hybrid effect, evidenced by significantly enhanced adsorption performance for the commercially important removal of heavy thiophenic compounds from hydrocarbons. Fundamental liquid-phase adsorption characteristics of the MMO/GO hybrids are quantified in terms of adsorption equilibrium isotherms, selectivity and adsorbent regenerability. Upon incorporation of as little as 5 wt% GO into the MMO material, the organosulfur uptake was increased by up to 170%, the recycling stability was markedly improved and pronounced selectivity for thiophenic organosulfurs over sulfur-free aromatic hydrocarbons was observed.

Journal article

Iruretagoyena D, Huang X, Shaffer MSP, Chadwick Det al., 2015, Influence of Alkali Metals (Na, K, and Cs) on CO2 Adsorption by Layered Double Oxides Supported on Graphene Oxide, INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, Vol: 54, Pages: 11610-11618, ISSN: 0888-5885

Journal article

Iruretagoyena D, Shaffer MSP, Chadwick D, 2015, Layered Double Oxides Supported on Graphene Oxide for CO2 Adsorption: Effect of Support and Residual Sodium, INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, Vol: 54, Pages: 6781-6792, ISSN: 0888-5885

Journal article

Iruretagoyena D, Shaffer MSP, Chadwick D, 2014, Adsorption of carbon dioxide on graphene oxide supported layered double oxides, ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, Vol: 20, Pages: 321-330, ISSN: 0929-5607

Journal article

Garcia-Gallastegui A, Iruretagoyena D, Gouvea V, Mokhtar M, Asiri AM, Basahel SN, Al-Thabaiti SA, Alyoubi AO, Chadwick D, Shaffer MSPet al., 2012, Graphene Oxide as Support for Layered Double Hydroxides: Enhancing the CO<sub>2</sub> Adsorption Capacity, CHEMISTRY OF MATERIALS, Vol: 24, Pages: 4531-4539, ISSN: 0897-4756

Journal article

Garcia-Gallastegui A, Iruretagoyena D, Mokhtar M, Asiri M A, Basahel S N, Al-Thabaiti S A, Alyoubi A O, Chadwick D, Shaffer MSPet al., 2012, Layered Double Hydroxide supported on Multi-wall Carbon Nanotubes: preparation and CO2 sorption characteristics, J. Mater. Chem., Vol: 22

Journal article

Celaya Sanfiz A, Garcia-Gallastegui A, Iruretagoyena D, Mokhtar M, Asiri M A, Basahel S N, Al-Thabaiti S A, Alyoubi A O, Chadwick D, Shaffer MSPet al., 2012, Self condensation of acetone over Mg-Al layered double hydroxide supported on multi-walled carbon nanotube catalysts

Journal article

Iruretagoyena Ferrer D, 2009, Dimerizacion de pentenos con alumina fluorada

Dimerisation of isoamylenes coming from a pentane catalytic dehydrogenation process is an option to transform these branched olefins into unsaturated compounds of ten carbons (diisoamylenes). Dimers derivatives have a wide range of industrial applications. The present research sets the basis for the development of a feasible process of branched pentene dimerisation using fluorinated alumina as catalyst. Experimental tests were carried out in a packed bed reactor. 2-methyl-2-butene was used as model reactant. The effluent composition was followed by gas chromatography and mass spectroscopy. Solid characterization was done by means of surface area, total acidity, elemental and thermogravimetric analysis.

Thesis dissertation

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00609473&limit=30&person=true