Imperial College London

DrDavidBoyle

Faculty of EngineeringDyson School of Design Engineering

Lecturer
 
 
 
//

Contact

 

+44 (0)20 7594 8172david.boyle CV

 
 
//

Location

 

Dyson BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

39 results found

Bhatia L, Boyle D, McCann J, 2018, Aerial interactions with wireless sensors, The 16th ACM Conference on Embedded Networked Sensor Systems (SenSys 2018), Pages: 373-374

Sensing systems incorporating unmanned aerial vehicles have the potential to enable a host of hitherto impractical monitoring applications using wireless sensors in remote and extreme environments. Their use as data collection and power delivery agents can overcome challenges such as poor communications reliability in difficult RF environments and maintenance in areas dangerous for human operatives. Aerial interaction with wireless sensors presents some interesting new challenges, including selecting or designing appropriate communications protocols that must account for unique practicalities like the effects of velocity and altitude. This poster presents a practical evaluation of the effects of altitude when collecting sensor data using an unmanned aerial vehicle. We show that for an otherwise disconnected link over a long distance (70m), by increasing altitude (5m) the link is created and its signal strength continues to improve over tens of metres. This has interesting implications for protocol design and optimal aerial route planning.

Conference paper

Kiziroglou M, Wright S, Shi M, Boyle D, Becker T, Evans J, Yeatman Eet al., Milliwatt power supply by dynamic thermoelectric harvesting, PowerMEMS 2018, Publisher: Institute of Physics (IoP), ISSN: 1742-6588

In this work we demonstrate a power supply that collects thermal energy from temperature fluctuations in time, to provide regulated power in the milliwatt range. It is based on the dynamic thermoelectric energy harvesting concept, in which a phase change material is used to store heat and create spatial heat flow from temperature transients. A simple, cost-effective and reproducible fabrication method is employed, based on 3D printing and off-the-shelf components. The harvester is integrated with a commercial power management module and supercapacitor storage. Output energy up to 2 J is demonstrated from temperature cycles corresponding to avionic applications. The demonstration includes harvesting while powering a 10 kΩ analogue voltmeter directly from the supercapacitor, including during cold-starting.

Conference paper

Mitcheson PD, Kkelis G, Aldhaher S, Arteaga JM, Yates DC, Boyle D, Yeatman EMet al., 2018, Power Electronics for Wireless Power Delivery in Synthetic Sensor Networks, 17th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS), Publisher: IOP PUBLISHING LTD, ISSN: 1742-6588

Conference paper

Kiziroglou M, Cowell M, Kumaravel BT, Boyle D, Evans JW, Wright PK, yeatman Eet al., 2018, Speed vs efficiency and storage type in portable energy systems, PowerMEMS 2017, Publisher: Institute of Physics (IoP), ISSN: 1742-6588

Portable power management systems must optimise power interfacing, storage androuting, to meet application specific functionality requirements. Two key aspects are reliabilityand efficiency. For reliable operation, it is required that powering on/off the system must occurin a planned manner. For efficient operation, it is desired that the system is powered for anoptimal amount of time. maximizing its useful operational outcome per unit of energy consumed.This can be achieved by optimizing energy usage based on the anticipated energy income andpower demand of duty-cycled power consumers. Both battery and supercapacitor storage can beemployed to meet energy and power density demand, on both sides, and to enable fast transitionfrom cold-starting to active power management. A simplified model is used to calculate thereliability of a simple solar-powered microsystem. The modelling of dynamically configurableinterfacing and storage may enable a new generation of power management, providing reliablepower from irregular and small energy sources.

Conference paper

Qin Y, Boyle D, Yeatman E, 2018, A novel protocol for data links between wireless sensors and UAV based sink nodes, Pages: 371-376

© 2018 IEEE. Mobile data collection using Unmanned Aerial Vehicles has the potential to improve device-level energy efficiency and balance network-level energy consumption in comparison with traditional Wireless Sensor Networks. This approach allows new application areas to be explored, particularly in harsh and remote environments, where creating radio links between each device may be impossible, infrastructure networks do not exist, accessibility is limited, etc. Protocols designed for data collection in traditional low power wireless networks have rarely considered the use of mobile data sinks in a practical sense, typically routing data through the network towards a sink or gateway node. In this paper, we describe and evaluate a simple protocol designed specifically for data collection by an aerial mobile sink from static sensing devices. The protocol uses existing ultra-low power physical and asynchronous medium access control mechanisms, and a lightweight application layer for data collection. We evaluate throughput for a number of realistic experimental conditions, including testing performance under contention for access to the medium and in the presence of packet collisions. We show that data collection is reliable in all cases for moderate UAV speeds, and the efficiency of the protocol decreases linearly with increased node density.

Conference paper

Mitcheson PD, Boyle D, Kkelis G, Yates D, Saenz JA, Aldhaher S, Yeatman Eet al., 2017, Energy-Autonomous Sensing Systems Using Drones, 16th IEEE SENSORS CONFERENCE, Publisher: IEEE, Pages: 648-650, ISSN: 1930-0395

Conference paper

Mitcheson PD, Boyle D, Kkelis G, Yates D, Saenz JA, Aldhaher S, Yeatman Eet al., 2017, Energy-autonomous sensing systems using drones, Pages: 1-3, ISSN: 1930-0395

© 2017 IEEE. This paper describes the system concept and initial results for end-to-end energy-autonomous sensor systems using unmanned aerial vehicles (drones) as agents for power delivery to and data gathering from sensing devices. Such systems may be particularly useful for delay tolerant monitoring scenarios, where sensing devices may be deployed in remote, harsh conditions, often with sparse connectivity, long life and high reliability requirements. This paper discusses the latest advances in wireless power delivery that makes this it possible to fly wireless power delivery systems on drones that have little payload capability.

Conference paper

Magno M, Boyle D, 2017, Wearable Energy Harvesting: From Body to Battery, 12th IEEE International Conference on Design & Technology of Integrated Systems In Nanoscale Era (DTIS), Publisher: IEEE

Conference paper

Kiziroglou M, Boyle D, Wright S, Yeatman Eet al., 2017, Acoustic power delivery to pipeline monitoring wireless sensors, Ultrasonics, Vol: 77, Pages: 54-60, ISSN: 1874-9968

The use of energy harvesting for powering wireless sensors is made more challenging in most applications by the requirement for customization to each specific application environment because of specificities of the available energy form, such as precise location, direction and motion frequency, as well as the temporal variation and unpredictability of the energy source. Wireless power transfer from dedicated sources can overcome these difficulties, and in this work, the use of targeted ultrasonic power transfer as a possible method for remote powering of sensor nodes is investigated. A powering system for pipeline monitoring sensors is described and studied experimentally, with a pair of identical, non6inertial piezoelectric transducers used at the transmitter and receiver. Power transmission of 18 mW (Root6Mean6Square) through 1 m of a 118 mm diameter cast iron pipe, with 8 mm wall thickness is demonstrated. By analysis of the delay between transmission and reception, including reflections from the pipeline edges, a transmission speed of 1000 m/s is observed, corresponding to the phase velocity of the L(0,1) axial and F(1,1) radial modes of the pipe structure. A reduction of power delivery with water6filling is observed, yet over 4 mW of delivered power through a fully6filled pipe is demonstrated. The transmitted power and voltage levels exceed the requirements for efficient power management, including rectification at cold6starting conditions, and for the operation of low6power sensor nodes. The proposed powering technique may allow the implementation of energy autonomous wireless sensor systems for monitoring industrial and network pipeline infrastructure.

Journal article

Kiziroglou M, boyle D, Yeatman E, Cilliers Jet al., 2016, Opportunities for sensing systems in mining, IEEE Transactions on Industrial Informatics, Vol: 13, Pages: 278-286, ISSN: 1551-3203

Pervasive sensing - the capability to deploy large numbers of sensors, to link them to communication networks, and to analyze their collective data - is transforming many industries. In mining, networked sensors are already used for remote operation, automation including driverless vehicles, health and safety, and exploration. In this paper, the state-of-the-art sensing and monitoring technologies are assessed as solutions against the main challenges and opportunities in the mining industry. Localization, mapping, remote operation, maintenance and health and safety are identified as the main beneficiaries, from rapidly developing technologies such as 3D visualization, augmented reality, energy autonomous sensor nodes, distributed sensing, smart network protocols and big data analytics. It is shown that the identification and management of ore grade in particular, which transcends each stage of the mining process, may critically benefit from certain arising sensing technologies, where major efficiency improvements are possible in exploration, extraction, haulage and processing activities.

Journal article

Boyle D, Kolcun R, Yeatman E, 2016, Towards precision control in constrained wireless cyber-physical systems, 2nd International Summit on Internet of Things - IoT Infrastructures( IoT 360), Publisher: Springer Verlag (Germany), Pages: 292-306, ISSN: 1867-8211

This paper introduces the problem of high precision control in constrained wireless cyber-physical systems. We argue that balancing conflicting performance objectives, namely energy efficiency, high reliability and low latency, whilst concurrently enabling data collection and targeted message dissemination, are critical to the success of future applications of constrained wireless cyber-physical systems. We describe the contemporary art in practical collection and dissemination techniques, and select the most appropriate for evaluation. A comprehensive simulation study is presented and experimentally validated, the results of which show that the current art falls significantly short of desirable performance when inter-packet intervals decrease to those required for precision control. It follows that there is a significant need for further study and new solutions to solve this emerging problem.

Conference paper

Boyle D, Kiziroglou ME, Mitcheson P, Yeatman Eet al., 2016, Provision and storage of energy for pervasive computing, IEEE Pervasive Computing, Vol: 15, Pages: 28-35, ISSN: 1558-2590

Soon, pervasive computers will enormously outnumber humans. Devices requiring sufficient energy to operate maintenance-free for periods of years and beyond render today’s technologiesinsufficient. With the gap between energy requirements of embedded systems and achievable levels of harvested power reducing, viable hybrid energy and power management subsystems have emerged that combine harvesting with finite, rechargeable energy buffers. Coupled with advances in wireless power transfer and energy storage, we propose that an energy design space is emerging. There are, as yet, no tools or systematic methods for design space exploration or engineering in this context. It is important to develop such a methodology, and critical to link it with methodologies for system design and verification. We discuss the key factors such an energy design methodology should incorporate,including size, weight, energy and power densities; efficiencies of harvesters and buffers; time between charges, (dis)charge speeds, and charge cycles; and availability and predictability of harvestable energy.

Journal article

Kolcun R, Boyle D, McCann J, Efficient In-Network Processing for a Hardware-Heterogeneous IoT, IoT2016 - 6th International Conference on the Internet of Things, Publisher: IEEE

As the number of small, battery-operated, wireless-enabled devices deployed in various applications of Internet of Things (IoT), Wireless Sensor Networks (WSN), and Cyber-physical Systems (CPS) is rapidly increasing, so is the number of data streams that must be processed. In cases where data do not need to be archived, centrally processed, or federated, in-network data processing is becoming more common. For this purpose, various platforms like D RAGON , Innet, and CJF were proposed. However, these platforms assume that all nodes in the network are the same, i.e. the network is homogeneous. As Moore’s law still applies, nodes are becoming smaller, more powerful, and more energy efficient each year; which will continue for the foreseeable future. Therefore, we can expect that as sensor networks are extended and updated, hardwareheterogeneity will soon be common in networks - the same trend as can be seen in cloud computing infrastructures. This heterogeneity introduces new challenges in terms of choosing an in-network data processing node, as not only its location, but also its capabilities, must be considered. This paper introduces a new methodology to tackle this challenge, comprising three new algorithms - Request, Traverse, and Mixed - for efficiently locating an in-network data processing node, while taking into account not only position within the network but also hardware capabilities. The roposed algorithms are evaluated against a naïve approach and achieve up to 90% reduction in network traffic during long-term data processing, while spending a similar amount time in the discovery phase.

Conference paper

Kolcun R, Boyle DE, McCann JA, 2016, Efficient Distributed Query Processing, IEEE Transactions on Automation Science and Engineering, Vol: 13, Pages: 1230-1246, ISSN: 1558-3783

A variety of wireless networks, including applications of Wireless Sensor Networks, Internet of Things, and Cyber-physical Systems, increasingly pervade our homes, retail, transportation systems, and manufacturing processes. Traditional approaches communicate data from all sensors to a central system, and users (humans or machines) query this central point for results, typically via the web. As the number of deployed sensors, and thus generated data streams, is increasing exponentially, this traditional approach may no longer be sustainable or desirable in some application contexts. Therefore, new approaches are required to allow users to directly interact with the network, for example, requesting data directly from sensor nodes. This is difficult, as it requires every node to be capable of point-to-point routing, in addition to identifying a subset of nodes that can fulfil a user's query. This paper presents Dragon, a platform that allows any node in the network to identify all nodes that satisfy user queries, i.e., request data from nodes, and relay the result to the user. The Dragon platform achieves this in a fully distributed way. No central orchestration is required, network overheads are low, and latency is improved over existing comparable methods. Dragon is evaluated on networks of various topologies and different network densities. It is compared with the state-of-the-art algorithms based on summary trees, like Innet and SENS-Join. Dragon is shown to outperform these approaches up to 88% in terms of network traffic required, also a proxy for energy efficiency, and 84% in terms of processing delay.

Journal article

Kiziroglou ME, Boyle D, Wright SW, Yeatman EMet al., Acoustic energy transmission in cast iron pipelines, PowerMEMS, Publisher: IOP Publishing Ltd, ISSN: 1742-6588

In this paper we propose acoustic power transfer as a method for the remote powering of pipeline sensor nodes. A theoretical framework of acoustic power propagation in the ceramic transducers and the metal structures is drawn, based on the Mason equivalent circuit. The effect of mounting on the electrical response of piezoelectric transducers is studied experimentally. Using two identical transducer structures, power transmission of 0.33 mW through a 1 m long, 118 mm diameter cast iron pipe, with 8 mm wall thickness is demonstrated, at 1 V received voltage amplitude. A near-linear relationship between input and output voltage is observed. These results show that it is possible to deliver significant power to sensor nodes through acoustic waves in solid structures. The proposed method may enable the implementation of acoustic - powered wireless sensor nodes for structural and operation monitoring of pipeline infrastructure.

Conference paper

Kolcun R, Boyle D, McCann JA, 2015, Optimal processing node discovery algorithm for distributed computing in IoT, 5th International Conference on the Internet of Things, Publisher: IEEE, Pages: 72-79

The number of Internet-connected sensing and control devices is growing. Some anticipate them to number in excess of 212 billion by 2020. Inherently, these devices generate continuous data streams, many of which need to be stored and processed. Traditional approaches, whereby all data are shipped to the cloud, may not continue to be effective as cloud infrastructure may not be able to handle myriads of data streams and their associated storage and processing needs. Using cloud infrastructure alone for data processing significantly increases latency, and contributes to unnecessary energy inefficiencies, including potentially unnecessary data transmission in constrained wireless networks, and on cloud computing facilities increasingly known to be significant consumers of energy. In this paper we present a distributed platform for wireless sensor networks which allows computation to be shifted from the cloud into the network. This reduces the traffic in the sensor network, intermediate networks, and cloud infrastructure. The platform is fully distributed, allowing every node in a homogeneous network to accept continuous queries from a user, find all nodes satisfying the user's query, find an optimal node (Fermat-Weber point) in the network upon which to process the query, and provide the result to the user. Our results show that the number of required messages can be decreased up to 49% and processing latency by 42% in comparison with state-of-the-art approaches, including Innet.

Conference paper

Boyle D, Kolcun R, Yeatman E, 2015, DEVICES IN THE INTERNET OF THINGS, JOURNAL OF THE INSTITUTE OF TELECOMMUNICATIONS PROFESSIONALS, Vol: 9, Pages: 27-31, ISSN: 1755-9278

Journal article

Boyle D, Kolcun R, Yeatman E, 2015, Devices in the internet of things, Journal of the Institute of Telecommunications Professionals, Vol: 9, Pages: 26-31, ISSN: 1755-9278

There are many potential applications in the utilities, critical infrastructure monitoring and control and environmental monitoring. This article charts the device-level technologies used in the creation the IoT, including hardware, software and communications. IoT's emergence coincided with the development of radio frequency identification (RFID) technology offering advantages such as the communicable range, ability to write data to a tag, and the possibility of reading multiple tags more efficiently with a single reader. RFID is now just one of many component IoT technologies. We have arrived at a situation where it is practically trivial to integrate computation and communication into any manufactured thing, and it is equally feasible to connect and technologically perceive natural things using communicable sensors. Furthermore, it is possible to react to, and control the environment using embedded computing devices coupled with actuators. Thorough comprehension of functional and non-functional requirements is necessary to develop an effective, efficient design specification for an IoT device. But given the large design space and complexity, there are numerous barriers to entry. As a result, many types of device have been adopted as practical de facto hardware development platforms across research communities, anc hacker and maker communities. In each case, intermediary 'operating systems', designed to simplify their programming by masking hardware complexity, are typically used. Their technical specifications are often not fully disclosed, but they do rely on well- defined standards to ensure the necessary interoperability. The majority of devices are characterised as single board computers. The final design for a market-ready product will likely be as efficient and cost-effective as possible in terms of design, but include sufficient redundancy to support software updates and potential shifts in standards. Since the early 2000s, the wireless sensor network comm

Journal article

Magno M, Boyle D, Brunelli D, Popovici E, Benini Let al., 2014, Ensuring Survivability of Resource-Intensive Sensor Networks Through Ultra-Low Power Overlays, IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, Vol: 10, Pages: 946-956, ISSN: 1551-3203

Journal article

Magno M, Boyle D, Brunelli D, O'Flynn B, Popovici E, Benini Let al., 2014, Extended Wireless Monitoring Through Intelligent Hybrid Energy Supply, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, Vol: 61, Pages: 1871-1881, ISSN: 0278-0046

Journal article

O'Connell E, O'Flynn B, Boyle D, 2014, Energy & Reliability Optimal MAC for WSNs, 10th International Conference on the Design of Reliable Communication Networks (DRCN), Publisher: IEEE

Conference paper

Boyle DE, Yates DC, Yeatman EM, 2013, Urban Sensor Data Streams: London 2013, IEEE INTERNET COMPUTING, Vol: 17, Pages: 12-20, ISSN: 1089-7801

Journal article

Boyle D, Yates D, Yeatman E, 2013, Urban Sensor Data Streams: London 2013, IEEE Internet Computing, Pages: 1-1, ISSN: 1089-7801

Journal article

O'Connell E, O'Flynn B, Boyle D, 2013, Clocks, latency and energy efficiency in duty cycled, multi-hop Wireless Sensor Networks, 5th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), Publisher: IEEE, Pages: 199-204

Conference paper

Rosello V, Boyle D, Portilla J, O Flynn B, Riesgo Tet al., 2013, Route-back delivery protocol for Collection Tree Protocol-based applications, 10th European Conference on Wireless Sensor Networks (EWSN)

Poster

Barta L, Boyle D, O Flynn B, Popovici Eet al., 2013, Simplified Commissioning and Maintenance for Wireless Sensor Networks: a Novel Software Tool, Publisher: VDE VERLAG GmbH

Conference paper

Boyle D, Ramparany F, 2012, Data processing for managing the quality of service in a machine-to-machine network, WO2012080414A2

Patent

Boyle D, Srbinovski B, Popovici E, O Flynn Bet al., 2012, Energy analysis of industrial sensors in novel wireless SHM systems, Pages: 1-4

Conference paper

Buckley J, O Flynn B, Loizou L, Haigh P, Boyle D, Angove P, Barton J, O Mathuna C, Popovici E, O Connell Set al., 2012, A Novel and Miniaturized 433/868MHz Multi-band Wireless Sensor Platform for Body Sensor Network Applications, Pages: 63-66

Conference paper

O Flynn B, Boyle D, Popovici EM, Magno M, Petrioli Cet al., 2011, GENESI: Wireless sensor networks for structural monitoring

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00776155&limit=30&person=true