Imperial College London

ProfessorEricKerrigan

Faculty of EngineeringDepartment of Electrical and Electronic Engineering

Professor of Control and Optimization
 
 
 
//

Contact

 

+44 (0)20 7594 6343e.kerrigan Website

 
 
//

Assistant

 

Mrs Raluca Reynolds +44 (0)20 7594 6281

 
//

Location

 

1114Electrical EngineeringSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Ng:2014:10.1002/we.1752,
author = {Ng, BF and Hesse, H and Palacios, R and Graham, JMR and Kerrigan, EC},
doi = {10.1002/we.1752},
journal = {Wind Energy},
pages = {1317--1331},
title = {Aeroservoelastic state-space vortex lattice modeling and load alleviation of wind turbine blades},
url = {http://dx.doi.org/10.1002/we.1752},
volume = {18},
year = {2014}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - An aeroservoelastic model, capturing the structural response and the unsteady aerodynamics of turbine rotors, will be used to demonstrate the potential of active load alleviation using aerodynamic control surfaces. The structural model is a geometrically non-linear composite beam, which is linearized around equilibrium rotating conditions and coupled with time-domain aerodynamics given by a linearized 3D unsteady vortex lattice method. With much of the existing work relying on blade element momentum theory with various corrections, the use of the unsteady vortex lattice method in this paper seeks to complement and provide a direct higher fidelity solution for the unsteady rotor dynamics in attached flow conditions. The resulting aeroelastic model is in a state-space formulation suitable for control synthesis. Flaps are modeled directly in the vortex lattice description and using a reduced-order model of the coupled aeroelastic formulation, a linear-quadratic-Gaussian controller is synthesized and shown to reduce root mean square values of the root-bending moment and tip deflection in the presence of continuous turbulence. Similar trend is obtained when the controller is applied to the original non-linear model of the turbine. Trade-offs between reducing root-bending moment and suppressing the negative impacts on torsion due to flap deployment will also be investigated.
AU - Ng,BF
AU - Hesse,H
AU - Palacios,R
AU - Graham,JMR
AU - Kerrigan,EC
DO - 10.1002/we.1752
EP - 1331
PY - 2014///
SN - 1095-4244
SP - 1317
TI - Aeroservoelastic state-space vortex lattice modeling and load alleviation of wind turbine blades
T2 - Wind Energy
UR - http://dx.doi.org/10.1002/we.1752
VL - 18
ER -