Imperial College London

Professor Saiz

Faculty of EngineeringDepartment of Materials

Chair in Structural Ceramics
 
 
 
//

Contact

 

+44 (0)20 7594 6779e.saiz

 
 
//

Location

 

LM04.BRoyal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

187 results found

D'Elia E, Ahmed HS, Feilden E, Saiz Eet al., 2019, Electrically-responsive graphene-based shape-memory composites, Applied Materials Today, Vol: 15, Pages: 185-191, ISSN: 2352-9407

Shape memory materials can open new design opportunities in fields as diverse as healthcare, transportation or energy generation. In this respect, shape memory polymers (SMPs) have attracted much attention due to their advantages over metals in terms of weight and reliability. However, they are still marred by slow reaction times and poor mechanical performance. In this work we show how, by integrating a graphene network in a SMP matrix, it is possible to create composites with very low carbon contents (below 1 wt%) able to change shapes in short times (10 s of seconds) in response to low electric voltages (<10 V). This is possible because the conductive network is highly interconnected at the microscopic scale, acting as a very efficient Joule heater. The composites exhibit excellent shape fixity (>0.95 ± 0.03) and shape recovery ratios (>0.98 ± 0.03). Due to the 2D nature of graphene, this network directs crack propagation during fracture resulting in materials that retain bending strengths close to 100 MPa and exhibit significant extrinsic toughening (with toughness that reach values up to 3 times the initiation value). Furthermore, changes in conductivity can be used to follow the formation and growth of damage in the material before catastrophic failure, allowing the use of this material as a damage sensor. These results provide practical guidelines for the design of reliable shape memory composites for structural and sensing applications.

Journal article

Wat A, Ferraro C, Deng X, Sweet A, Tomsia AP, Saiz E, Ritchie ROet al., 2019, Bioinspired nacre-like alumina with a metallic nickel compliant phase fabricated by spark-plasma sintering, Small, ISSN: 1613-6810

Many natural materials present an ideal "recipe" for the development of future damage-tolerant lightweight structural materials. One notable example is the brick-and-mortar structure of nacre, found in mollusk shells, which produces high-toughness, bioinspired ceramics using polymeric mortars as a compliant phase. Theoretical modeling has predicted that use of metallic mortars could lead to even higher damage-tolerance in these materials, although it is difficult to melt-infiltrate metals into ceramic scaffolds as they cannot readily wet ceramics. To avoid this problem, an alternative ("bottom-up") approach to synthesize "nacre-like" ceramics containing a small fraction of nickel mortar is developed. These materials are fabricated using nickel-coated alumina platelets that are aligned using slip-casting and rapidly sintered using spark-plasma sintering. Dewetting of the nickel mortar during sintering is prevented by using NiO-coated as well as Ni-coated platelets. As a result, a "nacre-like" alumina ceramic displaying a resistance-curve toughness up to ≈16 MPa m½ with a flexural strength of ≈300 MPa is produced.

Journal article

Feilden E, Glymond D, Saiz E, Vandeperre Let al., 2019, High temperature strength of an ultra high temperature ceramic produced by additive manufacturing, Ceramics International, ISSN: 0272-8842

In this study hafnium diboride was fabricated using the additive manufacturing technique robocasting. Parts have been successfully produced with complex shapes and internal structures not possible via conventional manufacturing techniques. Following pressureless sintering, the monolithic parts reach densities of 94–97% theoretical. These parts exhibit bending strength of 364 ± 31 MPa at room temperature, and maintain strengths of 196 ± 5 MPa up to 1950 °C, which is comparable to UHTC parts produced by traditional means. These are the highest temperature mechanical tests that a 3D printed part has ever undergone. The successful printing of the high density HfB2 demonstrates the versatile range materials that can be produced via robocasting using Pluronic pastes.

Journal article

Caballero SSR, Saiz E, Montembault A, Tadier S, Maire E, David L, Delair T, Gremillard Let al., 2019, 3-D printing of chitosan-calcium phosphate inks: rheology, interactions and characterization, Journal of Materials Science: Materials in Medicine, Vol: 30, ISSN: 0957-4530

Bone substitute fabrication is of interest to meet the worldwide incidence of bone disorders. Physical chitosan hydrogels with intertwined apatite particles were chosen to meet the bio-physical and mechanical properties required by a potential bone substitute. A set up for 3-D printing by robocasting was found adequate to fabricate scaffolds. Inks consisted of suspensions of calcium phosphate particles in chitosan acidic aqueous solution. The inks are shear-thinning and consist of a suspension of dispersed platelet aggregates of dicalcium phosphate dihydrate in a continuous chitosan phase. The rheological properties of the inks were studied, including their shear-thinning characteristics and yield stress. Scaffolds were printed in basic water/ethanol baths to induce transformation of chitosan-calcium phosphates suspension into physical hydrogel of chitosan mineralized with apatite. Scaffolds consisted of a chitosan polymeric matrix intertwined with poorly crystalline apatite particles. Results indicate that ink rheological properties could be tuned by controlling ink composition: in particular, more printable inks are obtained with higher chitosan concentration (0.19 mol·L−1).

Journal article

Wang X, Peng J, Zhang Y, Li M, Saiz E, Tomsia AP, Cheng Qet al., 2018, Ultratough Bioinspired Graphene Fiber via Sequential Toughening of Hydrogen and Ionic Bonding, ACS NANO, Vol: 12, Pages: 12638-12645, ISSN: 1936-0851

Journal article

Zhang Y, Peng J, Li M, Saiz E, Wolf SE, Cheng Qet al., 2018, Bioinspired Supertough Graphene Fiber through Sequential Interfacial Interactions., ACS Nano, ISSN: 1936-0851

Natural nacre exhibits extraordinary functional and structural diversity, combining high strength and toughness. The mechanical properties of nacre are attributed to (i) a highly arranged hierarchical layered structure of inorganic minerals (95 vol %) containing a small amount only of organic materials (5 vol %), (ii) abundant synergistic interfacial interactions, and (iii) formation under ambient temperature. Herein, inspired by these three design principles originating from natural nacre, the supertough bioinspired graphene-based nanocomposite fibers (BGNFs) are prepared under room temperature via sequential interfacial interactions of ionic bonding and π-π interactions. The resultant synergistic effect leads to a super toughness of 18.7 MJ m-3 as well as a high tensile strength of 740.1 MPa. In addition, the electrical conductivity of these supertough BGNFs is as high as 384.3 S cm-1. They can retain almost 80% of this conductivity even after 1000 cycles of loading-unloading testing, which makes these BGNFs promising candidates for application in flexible and stable electrical devices, such as strain sensors and actuators.

Journal article

Saiz E, Boccaccini AR, Chevalier J, Peroglio Met al., 2018, Editorial on Bioceramics for Bone Repair, JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, Vol: 38, Pages: 821-822, ISSN: 0955-2219

Journal article

Ferraro C, Meille S, Réthoré J, Ni N, Chevalier J, Saiz Eet al., 2017, Strong and tough metal/ceramic micro-laminates, Acta Materialia, Vol: 144, Pages: 202-215, ISSN: 1359-6454

There is a growing interest in the development of composites with complex structures designed to generate enhanced mechanical properties. The challenge is how to implement these structures in practical materials with the required degree of control. Here we show how freeze casting of ceramic preforms combined with metal infiltration can be used to fabricate Al2O3/Al-4wt% Mg micro-laminated composites. By manipulating the solid content of the suspension and the morphology of the ceramic particles (from platelets to round particles) it is possible to access a range of structures with layer thickness varying between 1 and 30 μm and metallic contents between 66 and 86 vol%. The mechanical response of the materials is characterized by combining bending tests with observation of crack propagation in two and three dimensions using different imaging techniques. These composites are able to combine high strength and toughness. They exhibit a rising R-curve behaviour although different structures generate different toughening mechanisms. Composites fabricated with Al2O3 particles exhibit the highest fracture resistance approaching 60 MPa m1/2, while laminates prepared from Al2O3 platelets exhibit higher strengths (above 700 MPa) while retaining fracture resistance up to ∼40 MPa m1/2. The results provide new insights on the effect of structure on the mechanical properties in metal-ceramic composites as well as on the design of appropriate testing procedures.

Journal article

Rocha VG, Garcia-Tunon E, Botas C, Markoulidis F, Feilden E, D'Elia E, Ni N, Shaffer M, Saiz Eet al., 2017, Multimaterial 3D Printing of Graphene-Based Electrodes for Electrochemical Energy Storage Using Thermoresponsive Inks, ACS APPLIED MATERIALS & INTERFACES, Vol: 9, Pages: 37136-37145, ISSN: 1944-8244

The current lifestyles, increasing population, and limited resources result in energy research being at the forefront of worldwide grand challenges, increasing the demand for sustainable and more efficient energy devices. In this context, additive manufacturing brings the possibility of making electrodes and electrical energy storage devices in any desired three-dimensional (3D) shape and dimensions, while preserving the multifunctional properties of the active materials in terms of surface area and conductivity. This paves the way to optimized and more efficient designs for energy devices. Here, we describe how three-dimensional (3D) printing will allow the fabrication of bespoke devices, with complex geometries, tailored to fit specific requirements and applications, by designing water-based thermoresponsive inks to 3D-print different materials in one step, for example, printing the active material precursor (reduced chemically modified graphene (rCMG)) and the current collector (copper) for supercapacitors or anodes for lithium-ion batteries. The formulation of thermoresponsive inks using Pluronic F127 provides an aqueous-based, robust, flexible, and easily upscalable approach. The devices are designed to provide low resistance interface, enhanced electrical properties, mechanical performance, packing of rCMG, and low active material density while facilitating the postprocessing of the multicomponent 3D-printed structures. The electrode materials are selected to match postprocessing conditions. The reduction of the active material (rCMG) and sintering of the current collector (Cu) take place simultaneously. The electrochemical performance of the rCMG-based self-standing binder-free electrode and the two materials coupled rCMG/Cu printed electrode prove the potential of multimaterial printing in energy applications.

Journal article

Pelissari PIBGB, Bouville F, Pandolfelli VC, Carnelli D, Giuliani F, Luz AP, Saiz E, Studart ARet al., 2017, Nacre-like ceramic refractories for high temperature applications, Journal of the European Ceramic Society, Vol: 38, Pages: 2186-2193, ISSN: 0955-2219

High-temperature ceramics, so-called refractories, are widely used for the manufacturing of metals, for energy generation and aerospace applications. Refractories are usually strong and stiff but fragile due to the lack of plastic deformation and other intrinsic toughening mechanisms. This inherent brittleness limits their use in applications where catastrophic failure is not tolerated. The present work reports the design and fabrication of refractories with a bio inspired nacre-like microstructure comprising aligned alumina platelets, separated by an aluminium borate interphase, obtained through transient liquid phase sintering. The bioinspired composites exhibit high strength, 672 MPa, toughness, 7.4 MPa m1/2, and stable crack propagation at high temperatures, above 600 °C, due to the aluminium borate interlayer. This makes nacre-like ceramic refractories sintered with a transient liquid phase good candidate for high temperature applications, competing favourably with ceramic matrix composites and following a simpler and cheaper processing route.

Journal article

Feilden E, Ferraro C, Zhang Q, García-Tuñón E, D'Elia E, Giuliani F, Vandeperre L, Saiz Eet al., 2017, 3D Printing Bioinspired Ceramic Composites., Scientific Reports, Vol: 7, ISSN: 2045-2322

Natural structural materials like bone and shell have complex, hierarchical architectures designed to control crack propagation and fracture. In modern composites there is a critical trade-off between strength and toughness. Natural structures provide blueprints to overcome this, however this approach introduces another trade-off between fine structural manipulation and manufacturing complex shapes in practical sizes and times. Here we show that robocasting can be used to build ceramic-based composite parts with a range of geometries, possessing microstructures unattainable by other production technologies. This is achieved by manipulating the rheology of ceramic pastes and the shear forces they experience during printing. To demonstrate the versatility of the approach we have fabricated highly mineralized composites with microscopic Bouligand structures that guide crack propagation and twisting in three dimensions, which we have followed using an original in-situ crack opening technique. In this way we can retain strength while enhancing toughness by using strategies taken from crustacean shells.

Journal article

Ferraro C, Garcia-Tunon E, Barg S, Miranda M, Ni N, Bell R, Saiz Eet al., 2017, SiC porous structures obtained with innovative shaping technologies, Journal of the European Ceramic Society, Vol: 38, Pages: 823-835, ISSN: 0955-2219

SiC structures with porosities ranging between 20–60% have been fabricated using two methods emulsification and freeze casting. While emulsification results in foam-like isotropic materials with interconnected pores, freeze casting can be used to fabricate highly anisotropic materials with characteristic layered architectures. The parameters that control the pore size and final porosity have been identified (solid content in the initial suspensions, emulsification times or speed of the freezing front). We have found that liquid state sintering (suing Al2O3 and Y2O3 as additives) at 1800 °C on a powder (SiC/Al2O3) bed provides optimum consolidation for the porous structures. The mechanical strength of the materials depends on their density. Freeze casted materials fabricated with bimodal particle size distributions (a controlled mixture of micro and nanoparticles) exhibit higher compressive strengths that can reach values of up to 280 MPa for materials with densities of 0.47.

Journal article

Garcia-Tunon E, Feilden E, Zheng H, D'Elia E, Leong A, Saiz Eet al., 2017, Graphene Oxide: An All-in-One Processing Additive for 3D Printing, ACS Applied Materials and Interfaces, Vol: 9, Pages: 32977-32989, ISSN: 1944-8244

Many 3D printing technologies are based on the development of inks and pastes to build objects through droplet or filament deposition (the latter also known as continuous extrusion, robocasting, or direct ink writing). Controlling and tuning rheological behavior is key for successful manufacturing using these techniques. Different formulations have been proposed, but the search continues for approaches that are clean, flexible, robust and that can be adapted to a wide range of materials. Here, we show how graphene oxide (GO) enables the formulation of water-based pastes to print a wide variety of materials (polymers, ceramics, and steel) using robocasting. This work combines flow and oscillatory rheology to provide further insights into the rheological behavior of suspensions combining GO with other materials. Graphene oxide can be used to manipulate the viscoelastic response, enabling the formulation of pastes with excellent printing behavior that combine shear thinning flow and a fast recovery of their elastic properties. These inks do not contain other additives, only GO and the material of interest. As a proof of concept, we demonstrate the 3D printing of additive-free graphene oxide structures as well as polymers, ceramics, and steel. Due to its amphiphilic nature and 2D structure, graphene oxide plays multiple roles, behaving as a dispersant, viscosifier, and binder. It stabilizes suspensions of different powders, modifies the flow and viscoelasticity of materials with different chemistries, particle sizes and shapes, and binds the particles together, providing green strength for manual handling. This approach enables printing complex 3D ceramic structures using robocasting with similar properties to alternative formulations, thus demonstrating the potential of using 2D colloids in materials manufacturing.

Journal article

Leong AYL, Mahtar MA, Mattevi C, Leong KH, Saiz E, Sum WSet al., 2017, Graphene filled epoxy coatings for enhanced corrosion protection, 21st International Conference on Composite Materials (ICCM-21)

© 2017 International Committee on Composite Materials. All rights reserved. The ability of graphene oxide derived fillers to enhance the moisture barrier performance of epoxy coating has been investigated. Films and coatings of virgin and modified graphene oxide (GO) were produced with different dispersion methods. Water vapour transmission rate (WVTR) was evaluated. Reduction in WVTR of GO/epoxy films were less than predicted and in one case, was higher than unfilled epoxy film. However, moisture barrier and corrosion protection performance were improved by reducing the graphene oxide. Films with reduced GO (rGO) have smaller WVTR while corrosion rate of rGO/epoxy coating was also lowered.

Conference paper

Ni H, Xu F, Tomsia AP, Saiz E, Jiang L, Cheng Qet al., 2017, Robust Bioinspired Graphene Film via pi-pi Cross-linking, ACS APPLIED MATERIALS & INTERFACES, Vol: 9, Pages: 24987-24992, ISSN: 1944-8244

Graphene composite films inspired by nacre are the subject of ongoing research efforts to optimize their properties for applications in flexible energy devices. Noncovalent interactions do not cause interruption of the delocalized conjugated π-electron system, thus preserving graphene’s excellent properties. Herein, we synthesized a conjugated molecule with pyrene groups on both ends of a long linear chain (AP-DSS) from 1-aminopyrene (AP) and disuccinimidyl suberate (DSS). The AP-DSS molecules are used to cross-link adjacent graphene nanosheets via π–π interfacial interactions to improve properties of graphene films. The tensile strength and toughness of resultant graphene films were 4.1 and 6.4 times higher, respectively, than that of pure rGO film. More remarkably, the electrical conductivity showed a simultaneous improvement, which is rare to be achieved in other kinds of covalent or noncovalent functionalization. Such integration demonstrates the advantage of this work to previously reported noncovalent functionalization of graphene.

Journal article

Machado GC, García-Tuñón E, Bell RV, Alini M, Saiz E, Peroglio Met al., 2017, Calcium phosphate substrates with emulsion-derived roughness: processing, characterisation and interaction with human mesenchymal stem cells, Journal of the European Ceramic Society, Vol: 38, Pages: 949-961, ISSN: 0955-2219

Calcium phosphates (CaP) have been the subject of several studies that often lack a systematic approach to understanding how their properties affect biological response. CaP particles functionalised with a pH-responsive polymer (BCS) were used to prepare microporous substrates (porosity between 70 and 75% and pore sizes of 5–20 μm) through the aggregation of oil-in-water emulsions by controlling solid loading, emulsification energy, pH, drying and sintering conditions. The combined effect of surface roughness (roughness amplitude, Ra between 0.9–1.7 μm) and chemistry (varying Hydroxyapatite/β-Tricalcium phosphate ratio) on human mesenchymal stem cells was evaluated. HA substrates stimulated higher cell adhesion and proliferation (especially with lower Ra), but cell area increased with β-TCP content. The effect of surface roughness depended of chemistry: HA promoted higher mineralising activity when Ra ∼ 1.5 μm, whereas β-TCP substrates stimulated a more osteogenic profile when Ra ∼ 1.7 μm. A novel templating method to fabricate microporous CaP substrates was developed, opening possibilities for bone substitutes with controlled features.

Journal article

Goyos-Ball L, Fernandez E, Diaz R, Fernandez A, Prado C, Torrecillas A, Saiz Gutierrez Eet al., 2017, Osseous differentiation on freeze casted 10CeTZP-Al2O3 structures, Journal of the European Ceramic Society, Vol: 37, Pages: 5009-5016, ISSN: 1873-619X

Three-dimensional structures with directionally oriented pore networks were fabricated from a 10 mol% ceria-stabilized zirconia and alumina composite (10CeTZP-Al2O3) via freeze casting. Ceramic suspensions of different concentrations (30, 40 and 50 wt% solids) were frozen at various rates (2, 5 and 10 °C/min) to obtain lamellar structures with aligned tubular pores of different characteristics: porosity (75–84%), pore dimensions (small diameter of the elliptical pores: 10–23 μm; large diameter of the elliptical pores: ∼200 ± 70 μm), lamella thickness (2.7–4 μm) and compression strength (1–12 MPa). In vitro assays confirmed the non-cytotoxic nature of the samples. Furthermore, specific osseous differentiation genes were quantified after incubating osteoblasts on different cross sections of the samples during 7 days in supplemented culture medium; results demonstrated that the freeze casted structures induce up to nine times more osseous gene expression than tissue culture polystyrene (TCPS), an advanced surface used for optimized in vitro cell growth.

Journal article

Goyos-Ball L, Garcia-Tunon E, Fernandez-Garcia E, Diaz R, Fernandez A, Prado C, Saiz E, Torrecillas Ret al., 2017, Mechanical and biological evaluation of 3D printed 10CeTZP-Al2O3 structures, Journal of the European Ceramic Society, Vol: 37, Pages: 3151-3158, ISSN: 0955-2219

Three-dimensional structures were robocasted from a 10 mol% ceria-stabilized zirconia and alumina composite (10CeTZP-Al2O3). A hydrogel-based printable ink was developed using a unique non-ionic copolymer surfactant. Self-supporting and free-standing structures, including round lattices with interconnected pores (200–600 μm pores; 30–50% porosity), rectangular bars (95% density on average) and cones were successfully printed. The round lattices of 200 μm pores and 30% porosity showed compression strengths similar to those of cortical bone, reaching almost 200 MPa. The maximum flexural strength value attained for the rectangular bars was 575 MPa. In vitro biological studies demonstrated that the samples allow for practically 100% cell viability, confirming their non-cytotoxic nature. Cell differentiation tests were performed using osteoblasts incubated for 7 days in supplemented cell culture medium. Quantification of specific osseous differentiation genes showed that the robocasted structures induced a higher degree of osseous differentiation than tissue culture polystyrene.

Journal article

Olowojoba GB, Kopsidas S, Eslava S, Saiz Gutierrez E, Kinloch AJ, Mattevi C, Garcia Rocha V, Taylor ACet al., 2017, A facile way to produce epoxy nanocomposites having excellent thermal conductivity with low contents of reduced graphene oxide, Journal of Materials Science, Vol: 52, Pages: 7323-7344, ISSN: 1573-4803

A well-dispersed phase of exfoliated graphene oxide (GO) nanosheets was initially prepared in water. This was concentrated by centrifugation and was mixed with a liquid epoxy resin. The remaining water was removed by evaporation, leaving a GO dispersion in epoxy resin. A stoichiometric amount of an anhydride curing agent was added to this epoxy-resin mixture containing the GO nanosheets, which was then cured at 90 °C for 1 hour followed by 160 °C for 2 hours. A second thermal treatment step of 200 °C for 30 minutes was then undertaken to reduce further the GO in-situ in the epoxy nanocomposite. An examination of the morphology of such nanocomposites containing reduced graphene oxide (rGO) revealed that a very good dispersion of rGO was achieved throughout the epoxy polymer. Various thermal and mechanical properties of the epoxy nanocomposites were measured and the most noteworthy finding was a remarkable increase in the thermal conductivity when relatively very low contents of rGO were present. For example, a value of 0.25 W/mK was measured at 30 °C for the nanocomposite with merely 0.06 weight percentage (wt%) of rGO present, which represents an increase of ~40% compared with that of the unmodified epoxy polymer. This value represents one of the largest increases in the thermal conductivity per wt% of added rGO yet reported. These observations have been attributed to the excellent dispersion of rGO achieved in these nanocomposites made via this facile production method. The present results show that it is now possible to tune the properties of an epoxy polymer with a simple and viable method of GO addition.

Journal article

Saiz Gutierrez E, Picot O, Ferraro C, Garcia Rocha V, Ni N, D'Elia E, Meille S, Chevalier J, Saunders T, Peijs T, Reece MJet al., 2017, Using graphene networks to build bioinspired self-monitoring ceramics, Nature Communications, Vol: 8, ISSN: 2041-1723

The properties of graphene open new opportunities for the fabrication of composites exhibiting unique structural and functional capabilities. However, to achieve this goal we should design and build materials with carefully designed architectures. Here, we describe the fabrication of ceramic-graphene composites by combining graphene foams with pre-ceramic polymers and spark plasma sintering. The result is a material containing an interconnected, microscopic network of very thin (20-30 nm), electrically conductive, carbon interfaces. This network generates electrical conductivities up to two orders of magnitude higher than those of other ceramics with similar graphene or carbon nanotube contents and can be used to monitor “in situ” structural integrity. In addition, it directs crack propagation, promoting stable crack growth and increasing the fracture resistance by an order of magnitude. These results demonstrate that the rational integration of nanomaterials could be a fruitful path towards building composites combining unique mechanical and functional performances.

Journal article

Feilden E, Giovannini T, Ni N, Ferraro C, Saiz E, Vandeperre L, Giuliani Fet al., 2017, Micromechanical strength of individual Al2O3 platelets, Scripta Materialia, Vol: 131, Pages: 55-58, ISSN: 1359-6462

Optimising the properties of platelet reinforced composites requires the strength of the reinforcing phase to be known, however strength measurements at such small scales are difficult and therefore data is sparse. In this work the flexural strength and Weibull modulus of microscopic, alumina platelets has been measured as 5.3 ± 1.3 GPa and 3.7 respectively, using an in-situ micro 3-point bend test. A general approach to correct for the effect of variation in sample size on the Weibull modulus is presented, and the internal structure of the platelets is revealed by TEM.

Journal article

Feilden E, Ferraro C, Giuliani F, Vandeperre L, Saiz Eet al., 2016, Progress in novel and unexpected areas, MATERIALS TODAY, Vol: 19, Pages: 544-545, ISSN: 1369-7021

Journal article

Garcia Tunon Blanca E, Machado G, Schneider M, Barg S, Bell R, Saiz Eet al., 2016, Complex ceramic architectures by directed assembly of ‘responsive’ particles, Journal of the European Ceramic Society, Vol: 37, Pages: 199-211, ISSN: 1873-619X

Surface functionalization of alumina powders with a responsive surfactant(BCS) leads to particles that react to a chemical switch. These ‘responsive’ building blocksare capable of assembling into macroscopic and complex ceramic structures. The aggregationfollows a bottom up approach and can be easily controlled. The directed assembly ofconcentrated suspensions leads to highly dense (~99%) ceramic components with average4-point bending strength of ~200 MPa. On the other hand, the emulsification of suspensionswith concentrations from 7 to 43 vol% and 50 vol% decane results in emulsions withdifferent properties (stability, droplet size and distribution). The oil droplets provide a softtemplate confining the alumina particles in the continuous phase and at the oil/water interfaces.Aggregation of these emulsions followed by drying and sintering leads tomacroporous (pore sizes ranging from 30 to 4 µm) alumina structures with complex shapesand a wide range of microstructures, from closed cell structures to highly interconnected foams with total porosities up to 83%. Alumina scaffolds with ~55 % porosity can reachcrushing strength values above 300 MPa in compression and ~50 MPa in 4-point bending.

Journal article

Eslava S, Reynal A, Rocha VG, Barg S, Saiz Eet al., 2016, Using graphene oxide as a sacrificial support of polyoxotitanium clusters to replicate its two-dimensionality on pure titania photocatalysts, Journal of Materials Chemistry A, Vol: 4, Pages: 7200-7206, ISSN: 2050-7496

The nanostructure optimisation of metal oxides is of crucial importance to exploit their qualities in artificial photosynthesis, photovoltaics and heterogeneous catalysis. Therefore, it is necessary to find viable and simple fabrication methods to tune their nanostructure. Here we reveal that graphene oxide flakes, known for their nano- and two-dimensionality, can be used as a sacrificial support to replicate their nano- and two-dimensionality in photocatalytic titania. This is demonstrated in the calcination of Ti16O16(OEt)32 polyoxotitanium clusters together with graphene oxide flakes, which results in pure titania nanoflakes of <10 nm titania nanoparticles in a two-dimensional arrangement. These titania nanoflakes outperform the titania prepared from only Ti16O16(OEt)32 clusters by a factor of forty in the photocatalytic hydrogen production from aqueous methanol suspensions, as well as the benchmark P25 titania by a factor of five. These outcomes reveal the advantage of using polyoxotitanium clusters with graphene oxide and open a new avenue for the exploitation of the vast variety of polyoxometalate clusters as precursors in catalysis and photovoltaics, as well as the use of graphene oxide as a sacrificial support for nanostructure optimisation.

Journal article

D'Elia E, Eslava S, Miranda M, Georgiou TK, Saiz Eet al., 2016, Autonomous self-healing structural composites with bio-inspired design, Scientific Reports, Vol: 6, ISSN: 2045-2322

Strong and tough natural composites such as bone, silk or nacre are often built from stiff blocks boundtogether using thin interfacial soft layers that can also provide sacrificial bonds for self-repair. Herewe show that it is possible exploit this design in order to create self-healing structural composites byusing thin supramolecular polymer interfaces between ceramic blocks. We have built model brick-andmortarstructures with ceramic contents above 95 vol% that exhibit strengths of the order of MPa(three orders of magnitude higher than the interfacial polymer) and fracture energies that are twoorders of magnitude higher than those of the glass bricks. More importantly, these properties can befully recovered after fracture without using external stimuli or delivering healing agents. This approachdemonstrates a very promising route towards the design of strong, ideal self-healing materials able toself-repair repeatedly without degradation or external stimuli.

Journal article

Nasiri NA, Saiz E, Giuliani F, Vandeperre LJet al., 2016, Grain bridging locations of monolithic silicon carbide by means of focused ion beam milling technique, Materials Letters, Vol: 173, Pages: 214-218, ISSN: 1873-4979

A slice and view approach using a focused ion beam (FIB) milling technique was employed to investigate grain bridging near the tip of cracks in four silicon carbide (SiC) based materials with different grain boundary chemistries and grain morphologies. Using traditional observations intergranular fracture behaviour and hence clear evidence of grain bridging was found for SiC based materials sintered with oxide additives. More surprisingly, in large grain materials, the FIB technique reveals evidence of grain bridging irrespective of the grain boundary chemistry, i.e. also in materials which macroscopically fail by transgranular failure. This helps to explain why the toughness of large grained materials is higher even if failure is transgranular.

Journal article

Feilden E, Garcia Tunon Blanca E, Giuliani F, Saiz Gutierrez E, Vandeperre LJMet al., 2016, Robocasting of Structural Ceramic Parts with Hydrogel Inks, Journal of the European Ceramic Society, Vol: 36, Pages: 2525-2533, ISSN: 1873-619X

Robocasting is a 3D printing technique that may be able to achieve the much-coveted goal of reliable, complex ceramic parts with low porosity and high strength. In this work a robust hydrogel formulation was optimised for use as the extrusion paste for robocasting. The paste’s rheological properties were characterised and the printing process was optimised with the aim of attaining dense monolithic ceramic parts. The pastes exhibit a characteristic shear thinning behaviour with yield stresses that can reach values above 1 kPa and depend mostly on their solid content and the particle size distribution. It is possible to formulate printable Al2O3 and SiC inks with solid contents as high as 40 vol% that reached densities up to 95th% for SiC and 97th% for Al2O3 with flexural strengths of 300 MPa and 230 MPa respectively after sintering. The sources of strength limiting defects are identified and related to the printing process.

Journal article

Ferraro C, Garcia-Tuñon E, Rocha VG, Barg S, Fariñas MD, Alvarez-Arenas TEG, Sernicola G, Giuliani F, Saiz Gutierrez Eet al., 2016, Light and Strong SiC Networks, Advanced Functional Materials, Vol: 26, Pages: 1636-1645, ISSN: 1616-301X

The directional freezing of micro-fiber suspensions is used to assemble highly porous(porosities ranging between 92 to 98%) SiC networks. These networks exhibit a uniquehierarchical architecture in which thin layers with honeycomb-like structure and internal strutlength in the order of 1 to 10 µm in size are aligned with an interlayer spacing rangingbetween 15 to 50 microns. The resulting structures exhibit strengths (up to 3 MPa) andstiffness (up to 0.3 GPa) that are higher than aerogels of similar density and comparable toother ceramic micro-lattices fabricated by vapor deposition. Furthermore, this wet processingtechnique allows the fabrication of large-size samples that are stable at high temperature, withacoustic impedance that can be manipulated over one order of magnitude (0.03-0.3 MRayl),electrically conductive and with very low thermal conductivity. The approach could beextended to other ceramic materials and opens new opportunities for the fabrication ofultralight structures with unique mechanical and functional properties in practical dimensions

Journal article

Chabi S, Rocha VG, Garcia-Tunon E, Ferraro C, Saiz E, Xia Y, Zhu Yet al., 2016, Ultralight, Strong, Three-Dimensional SiC Structures, ACS NANO, Vol: 10, Pages: 1871-1876, ISSN: 1936-0851

Journal article

Boix M, Eslava S, Machado GC, Gosselin E, Ni N, Saiz E, De Coninck Jet al., 2015, ATR-FTIR measurements of albumin and fibrinogen adsorption: Inert versus calcium phosphate ceramics, JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, Vol: 103, Pages: 3493-3502, ISSN: 1549-3296

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00624302&limit=30&person=true