Imperial College London

DrErikVolz

Faculty of MedicineSchool of Public Health

Senior Lecturer
 
 
 
//

Contact

 

+44 (0)20 7594 1933e.volz Website

 
 
//

Location

 

UG10Norfolk PlaceSt Mary's Campus

//

Summary

 

Publications

Publication Type
Year
to

97 results found

Volz E, Mishra S, Chand M, Barrett JC, Johnson R, Geidelberg L, Hinsley WR, Laydon DJ, Dabrera G, O'Toole Á, Amato R, Ragonnet-Cronin M, Harrison I, Jackson B, Ariani CV, Boyd O, Loman NJ, McCrone JT, Gonçalves S, Jorgensen D, Myers R, Hill V, Jackson DK, Gaythorpe K, Groves N, Sillitoe J, Kwiatkowski DP, COVID-19 Genomics UK COG-UK consortium, Flaxman S, Ratmann O, Bhatt S, Hopkins S, Gandy A, Rambaut A, Ferguson NMet al., 2021, Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England, Nature, ISSN: 0028-0836

The SARS-CoV-2 lineage B.1.1.7, designated a Variant of Concern 202012/01 (VOC) by Public Health England1, originated in the UK in late Summer to early Autumn 20202. Whole genome SARS-CoV-2 sequence data collected from community-based diagnostic testing shows an unprecedentedly rapid expansion of the B.1.1.7 lineage during Autumn 2020, suggesting a selective advantage. We find that changes in VOC frequency inferred from genetic data correspond closely to changes inferred by S-gene target failures (SGTF) in community-based diagnostic PCR testing. Analysis of trends in SGTF and non-SGTF case numbers in local areas across England shows that the VOC has higher transmissibility than non-VOC lineages, even if the VOC has a different latent period or generation time. The SGTF data indicate a transient shift in the age composition of reported cases, with a larger share of under 20 year olds among reported VOC than non-VOC cases. Time-varying reproduction numbers for the VOC and cocirculating lineages were estimated using SGTF and genomic data. The best supported models did not indicate a substantial difference in VOC transmissibility among different age groups. There is a consensus among all analyses that the VOC has a substantial transmission advantage with a 50% to 100% higher reproduction number.

Journal article

Smith TP, Dorigatti I, Mishra S, Volz E, Walker PGT, Ragonnet-Cronin M, Tristem M, Pearse WDet al., 2021, Environmental drivers of SARS-CoV-2 lineage B.1.1.7 transmission intensity

<jats:title>Abstract</jats:title><jats:p>Previous work has shown that environment affects SARS-CoV-2 transmission, but it is unclear whether emerging strains show similar responses. Here we show that, like other SARS-CoV-2 strains, lineage B.1.1.7 spread with greater transmission in colder and more densely populated parts of England. However, we also find evidence of B.1.1.7 having a transmission advantage at warmer temperatures compared to other strains. This implies that spring and summer conditions are unlikely to slow B.1.1.7’s invasion in Europe and across the Northern hemisphere - an important consideration for public health interventions.</jats:p>

Journal article

Ragonnet-Cronin M, Boyd O, Geidelberg L, Jorgensen D, Nascimento F, Siveroni I, Johnson R, Baguelin M, Cucunuba Z, Jauneikaite E, Mishra S, Watson O, Ferguson N, Cori A, Donnelly C, Volz Eet al., 2021, Genetic evidence for the association between COVID-19 epidemic severity and timing of non-pharmaceutical interventions, Nature Communications, ISSN: 2041-1723

Unprecedented public health interventions including travel restrictions and national lockdowns have been implemented to stem the COVID-19 epidemic, but the effectiveness of non- pharmaceutical interventions is still debated. We carried out a phylogenetic analysis of more than 29,000 publicly available whole genome SARS-CoV-2 sequences from 57 locations to estimate the time that the epidemic originated in different places. These estimates were examined in relation to the dates of the most stringent interventions in each location as well as to the number of cumulative COVID-19 deaths and phylodynamic estimates of epidemic size. Here we report that the time elapsed between epidemic origin and maximum intervention is associated with different measures of epidemic severity and explains 11% of the variance in reported deaths one month after the most stringent intervention. Locations where strong non-pharmaceutical interventions were implemented earlier experienced 30 much less severe COVID-19 morbidity and mortality during the period of study.

Journal article

Nouvellet P, Bhatia S, Cori A, Ainslie K, Baguelin M, Bhatt S, Boonyasiri A, Brazeau N, Cattarino L, Cooper L, Coupland H, Cucunuba Perez Z, Cuomo-Dannenburg G, Dighe A, Djaafara A, Dorigatti I, Eales O, van Elsland S, NASCIMENTO F, Fitzjohn R, Gaythorpe K, Geidelberg L, green W, Hamlet A, Hauck K, Hinsley W, Imai N, Jeffrey, Jeffrey B, Knock E, Laydon D, Lees J, Mangal T, Mellan T, Nedjati Gilani G, Parag K, Pons Salort M, Ragonnet-Cronin M, Riley S, Unwin H, Verity R, Vollmer M, Volz E, Walker P, Walters C, Wang H, Watson O, Whittaker C, Whittles L, Xi X, Ferguson N, Donnelly Cet al., 2021, Reduction in mobility and COVID-19 transmission, Nature Communications, Vol: 12, ISSN: 2041-1723

In response to the COVID-19 pandemic, countries have sought to control SARS-CoV-2 transmission by restricting population movement through social distancing interventions, thus reducing the number of contacts.Mobility data represent an important proxy measure of social distancing, and here, we characterise the relationship between transmission and mobility for 52 countries around the world.Transmission significantly decreased with the initial reduction in mobility in 73% of the countries analysed, but we found evidence of decoupling of transmission and mobility following the relaxation of strict control measures for 80% of countries. For the majority of countries, mobility explained a substantial proportion of the variation in transmissibility (median adjusted R-squared: 48%, interquartile range - IQR - across countries [27-77%]). Where a change in the relationship occurred, predictive ability decreased after the relaxation; from a median adjusted R-squared of 74% (IQR across countries [49-91%]) pre-relaxation, to a median adjusted R-squared of 30% (IQR across countries [12-48%]) post-relaxation.In countries with a clear relationship between mobility and transmission both before and after strict control measures were relaxed, mobility was associated with lower transmission rates after control measures were relaxed indicating that the beneficial effects of ongoing social distancing behaviours were substantial.

Journal article

du Plessis L, McCrone JT, Zarebski AE, Hill V, Ruis C, Gutierrez B, Raghwani J, Ashworth J, Colquhoun R, Connor TR, Faria NR, Jackson B, Loman NJ, O'Toole A, Nicholls SM, Parag K, Scher E, Vasylyeva T, Volz EM, Watts A, Bogoch II, Khan K, Aanensen DM, Kraemer MUG, Rambaut A, Pybus OGet al., 2021, Establishment and lineage dynamics of the SARS-CoV-2 epidemic in the UK, SCIENCE, Vol: 371, Pages: 708-+, ISSN: 0036-8075

Journal article

Didelot X, Volz EM, 2021, Maximum likelihood inference of pathogen population size history from a phylogeny

<jats:title>ABSTRACT</jats:title><jats:p>Inference of effective population size from genomic data can provide unique information about demographic history, and when applied to pathogen genetic data can also provide insights into epidemiological dynamics. Non-parametric models for population dynamics combined with molecular clock models which relate genetic data to time have enabled phylodynamic inference based on large sets of time-stamped genetic sequence data. The theory for non-parametric inference of effective population size is well-developed in the Bayesian setting, but here we develop a frequentist approach based on non-parametric latent process models of population size dynamics. We appeal to statistical principles based on out-of-sample prediction accuracy in order to optimize parameters that control shape and smoothness of the population size over time. We demonstrate the flexibility and speed of this approach in a series of simulation experiments and apply the models to genetic data from several pathogen data sets.</jats:p>

Journal article

Volz E, Hill V, McCrone J, Price A, Jorgensen D, O'Toole A, Southgate JA, Johnson R, Jackson B, Nascimento F, Rey S, Nicholls S, Colquhoun R, da Silva Filipe A, Shepherd J, Pascall D, Shah R, Jesudason N, Li K, Jarrett R, Pacchiarini N, Bull M, Geidelberg L, Siveroni I, Goodfellow I, Loman NJ, Pybus O, Robertson D, Thomson E, Rambaut A, Connor T, The COVID-19 Genomics UK Consortiumet al., 2021, Evaluating the effects of SARS-CoV-2 Spike mutation D614G on transmissibility and pathogenicity, Cell, Vol: 184, Pages: 64-75.e11, ISSN: 0092-8674

In February 2020 a substitution at the interface between SARS-CoV-2 Spike protein subunits, Spike D614G, was observed in public databases. The Spike 614G variant subsequently increased in frequency in many locations throughout the world. Global patterns of dispersal of Spike 614G are suggestive of a selective advantage of this variant, however the origin of Spike 614G is associated with early colonization events in Europe and subsequent radiations to the rest of the world. Increasing frequency of 614G may therefore be due to a random founder effect. We investigate the hypothesis for positive selection of Spike 614G at the level of an individual country, the United Kingdom, using more than 25,000 whole genome SARS-CoV-2 sequences collected by COVID-19 Genomics UK Consortium. Using phylogenetic analysis, we identify Spike 614G and 614D clades with unique origins in the UK and from these we extrapolate and compare growth rates of co-circulating transmission clusters. We find that Spike 614G clusters are introduced in the UK later on average than 614D clusters and grow to larger size after adjusting for time of introduction. Phylodynamic analysis does not show a significant increase in growth rates for clusters with the 614G variant, but population genetic modelling indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We also investigate the potential influence of Spike 614D versus G on virulence by matching a subset of records to clinical data on patient outcomes. We do not find any indication that patients infected with the Spike 614G variant have higher COVID-19 mortality, but younger patients have slightly increased odds of 614G carriage. Despite the availability of a very large data set, well represented by both Spike 614 variants, not all approaches showed a conclusive signal of higher transmission rate for 614G, but significant differences in growth, size, and composition of these lineages indicate a need

Journal article

Volz E, Mishra S, Chand M, Barrett JC, Johnson R, Geidelberg L, Hinsley WR, Laydon DJ, Dabrera G, OToole Á, Amato R, Ragonnet-Cronin M, Harrison I, Jackson B, Ariani CV, Boyd O, Loman N, McCrone JT, Gonc calves S, Jorgensen D, Myers R, Hill V, Jackson DK, Gaythorpe K, Groves N, Sillitoe J, Kwiatkowski DP, Flaxman S, Ratman O, Bhatt S, Hopkins S, Gandy A, Rambaut A, Ferguson NMet al., 2021, Transmission of SARS-CoV-2 Lineage B.1.1.7 in England: Insights from linking epidemiological and genetic data, Publisher: Cold Spring Harbor Laboratory Press

The SARS-CoV-2 lineage B.1.1.7, now designated Variant of Concern 202012/01 (VOC) by Public Health England, originated in the UK in late Summer to early Autumn 2020. We examine epidemiological evidence for this VOC having a transmission advantage from several perspectives. First, whole genome sequence data collected from community-based diagnostic testing provides an indication of changing prevalence of different genetic variants through time. Phylodynamic modelling additionally indicates that genetic diversity of this lineage has changed in a manner consistent with exponential growth. Second, we find that changes in VOC frequency inferred from genetic data correspond closely to changes inferred by S-gene target failures (SGTF) in community-based diagnostic PCR testing. Third, we examine growth trends in SGTF and non-SGTF case numbers at local area level across England, and show that the VOC has higher transmissibility than non-VOC lineages, even if the VOC has a different latent period or generation time. Available SGTF data indicate a shift in the age composition of reported cases, with a larger share of under 20 year olds among reported VOC than non-VOC cases. Fourth, we assess the association of VOC frequency with independent estimates of the overall SARS-CoV-2 reproduction number through time. Finally, we fit a semi-mechanistic model directly to local VOC and non-VOC case incidence to estimate the reproduction numbers over time for each. There is a consensus among all analyses that the VOC has a substantial transmission advantage, with the estimated difference in reproduction numbers between VOC and non-VOC ranging between 0.4 and 0.7, and the ratio of reproduction numbers varying between 1.4 and 1.8. We note that these estimates of transmission advantage apply to a period where high levels of social distancing were in place in England; extrapolation to other transmission contexts therefore requires caution.Competing Interest StatementThe authors have declared

Working paper

Didelot X, Siveroni I, Volz EM, 2021, Additive uncorrelated relaxed clock models for the dating of genomic epidemiology phylogenies, Molecular Biology and Evolution, Vol: 38, Pages: 307-317, ISSN: 0737-4038

Phylogenetic dating is one of the most powerful and commonly used methods of drawing epidemiological interpretations from pathogen genomic data. Building such trees requires considering a molecular clock model which represents the rate at which substitutions accumulate on genomes. When the molecular clock rate is constant throughout the tree then the clock is said to be strict, but this is often not an acceptable assumption. Alternatively, relaxed clock models consider variations in the clock rate, often based on a distribution of rates for each branch. However, we show here that the distributions of rates across branches in commonly used relaxed clock models are incompatible with the biological expectation that the sum of the numbers of substitutions on two neighbouring branches should be distributed as the substitution number on a single branch of equivalent length. We call this expectation the additivity property. We further show how assumptions of commonly used relaxed clock models can lead to estimates of evolutionary rates and dates with low precision and biased confidence intervals. We therefore propose a new additive relaxed clock model where the additivity property is satisfied. We illustrate the use of our new additive relaxed clock model on a range of simulated and real datasets, and we show that using this new model leads to more accurate estimates of mean evolutionary rates and ancestral dates.

Journal article

Geidelberg L, Boyd O, Jorgensen D, Siveroni I, Nascimento FF, Johnson R, Ragonnet-Cronin M, Fu H, Wang H, Xi X, Chen W, Liu D, Chen Y, Tian M, Tan W, Zai J, Sun W, Li J, Li J, Volz E, Li X, Nie Qet al., 2021, Genomic epidemiology of a densely sampled COVID-19 outbreak in China, Virus Evolution, Vol: 7, Pages: 1-7, ISSN: 2057-1577

Analysis of genetic sequence data from the SARS-CoV-2 pandemic can provide insights into epidemic origins, worldwide dispersal, and epidemiological history. With few exceptions, genomic epidemiological analysis has focused on geographically distributed data sets with few isolates in any given location. Here we report an analysis of 20 whole SARS- CoV-2 genomes from a single relatively small and geographically constrained outbreak in Weifang, People’s Republic of China. Using Bayesian model-based phylodynamic methods, we estimate a mean basic reproduction number (R0) of 3.4 (95% highest posterior density interval: 2.1-5.2) in Weifang, and a mean effective reproduction number (Rt ) that falls below 1 on February 4th. We further estimate the number of infections through time and compare these estimates to confirmed diagnoses by the Weifang Centers for Disease Control. We find that these estimates are consistent with reported cases and there is unlikely to be a large undiagnosed burden of infection over the period we studied.

Journal article

Fu H, Wang H, Xi X, Boonyasiri A, Wang Y, Hinsley W, Fraser KJ, McCabe R, Olivera Mesa D, Skarp J, Ledda A, Dewé T, Dighe A, Winskill P, van Elsland SL, Ainslie KEC, Baguelin M, Bhatt S, Boyd O, Brazeau NF, Cattarino L, Charles G, Coupland H, Cucunubá ZM, Cuomo-Dannenburg G, Donnelly CA, Dorigatti I, Eales OD, Fitzjohn RG, Flaxman S, Gaythorpe KAM, Ghani AC, Green WD, Hamlet A, Hauck K, Haw DJ, Jeffrey B, Laydon DJ, Lees JA, Mellan T, Mishra S, Nedjati Gilani G, Nouvellet P, Okell L, Parag KV, Ragonnet-Cronin M, Riley S, Schmit N, Thompson HA, Unwin HJT, Verity R, Vollmer MAC, Volz E, Walker PGT, Walters CE, Waston OJ, Whittaker C, Whittles LK, Imai N, Bhatia S, Ferguson NMet al., 2021, A database for the epidemic trends and control measures during the first wave of COVID-19 in mainland China, International Journal of Infectious Diseases, Vol: 102, Pages: 463-471, ISSN: 1201-9712

Objectives: This data collation effort aims to provide a comprehensive database to describe the epidemic trends and responses during the first wave of coronavirus disease 2019 (COVID-19)across main provinces in China. Methods: From mid-January to March 2020, we extracted publicly available data on the spread and control of COVID-19 from 31 provincial health authorities and major media outlets in mainland China. Based on these data, we conducted a descriptive analysis of the epidemics in the six most-affected provinces. Results: School closures, travel restrictions, community-level lockdown, and contact tracing were introduced concurrently around late January but subsequent epidemic trends were different across provinces. Compared to Hubei, the other five most-affected provinces reported a lower crude case fatality ratio and proportion of critical and severe hospitalised cases. From March 2020, as local transmission of COVID-19 declined, switching the focus of measures to testing and quarantine of inbound travellers could help to sustain the control of the epidemic. Conclusions: Aggregated indicators of case notifications and severity distributions are essential for monitoring an epidemic. A publicly available database with these indicators and information on control measures provides useful source for exploring further research and policy planning for response to the COVID-19 epidemic.

Journal article

Li X, Liu H, Rife Magalis B, Kosakovsky Pond SL, Volz EMet al., 2021, Molecular Evolution of Human Norovirus GII.2 Clusters., Front Microbiol, Vol: 12, ISSN: 1664-302X

Background: The human norovirus GII.2 outbreak during the 2016-2017 winter season was of unprecedented scale and geographic distribution. Methods: We analyzed 519 complete VP1 gene sequences of the human norovirus GII.2 genotype sampled during the 2016-2017 winter season, as well as prior (dating back to 1976) from 7 countries. Phylodynamic analyses of these sequences were performed using maximum likelihood and Bayesian statistical frameworks in order to estimate viral evolutionary and population dynamics associated with the outbreak. Results: Our results revealed an increase in the genetic diversity of human norovirus GII.2 during the recent Asian outbreak and diversification was characterized by at least eight distinct clusters. Bayesian estimation of viral population dynamics revealed a highly fluctuating effective population size, increasing in frequency during the past 15 years. Conclusion: Despite an increasing viral diversity, we found no evidence of an elevated evolutionary rate or significant selection pressure in human norovirus GII.2, indicating viral evolutionary adaptation was not responsible for the volatility of or spread of the virus during this time.

Journal article

Maurano MT, Ramaswami S, Zappile P, Dimartino D, Boytard L, Ribeiro-dos-Santos AM, Vulpescu NA, Westby G, Shen G, Feng X, Hogan MS, Ragonnet-Cronin M, Geidelberg L, Marier C, Meyn P, Zhang Y, Cadley J, Ordonez R, Luther R, Huang E, Guzman E, Arguelles-Grande C, Argyropoulos KV, Black M, Serrano A, Call ME, Kim MJ, Belovarac B, Gindin T, Lytle A, Pinnell J, Vougiouklakis T, Chen J, Lin LH, Rapkiewicz A, Raabe V, Samanovic MI, Jour G, Osman I, Aguero-Rosenfeld M, Mulligan MJ, Volz EM, Cotzia P, Snuderl M, Heguy Aet al., 2020, Sequencing identifies multiple early introductions of SARS-CoV-2 to the New York City region, GENOME RESEARCH, Vol: 30, ISSN: 1088-9051

Journal article

Grassly NC, Pons-Salort M, Parker EPK, White PJ, Ferguson NM, Imperial College COVID-19 Response Teamet al., 2020, Comparison of molecular testing strategies for COVID-19 control: a mathematical modelling study, Lancet Infectious Diseases, Vol: 20, Pages: 1381-1389, ISSN: 1473-3099

BACKGROUND: WHO has called for increased testing in response to the COVID-19 pandemic, but countries have taken different approaches and the effectiveness of alternative strategies is unknown. We aimed to investigate the potential impact of different testing and isolation strategies on transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: We developed a mathematical model of SARS-CoV-2 transmission based on infectiousness and PCR test sensitivity over time since infection. We estimated the reduction in the effective reproduction number (R) achieved by testing and isolating symptomatic individuals, regular screening of high-risk groups irrespective of symptoms, and quarantine of contacts of laboratory-confirmed cases identified through test-and-trace protocols. The expected effectiveness of different testing strategies was defined as the percentage reduction in R. We reviewed data on the performance of antibody tests reported by the Foundation for Innovative New Diagnostics and examined their implications for the use of so-called immunity passports. FINDINGS: If all individuals with symptoms compatible with COVID-19 self-isolated and self-isolation was 100% effective in reducing onwards transmission, self-isolation of symptomatic individuals would result in a reduction in R of 47% (95% uncertainty interval [UI] 32-55). PCR testing to identify SARS-CoV-2 infection soon after symptom onset could reduce the number of individuals needing to self-isolate, but would also reduce the effectiveness of self-isolation (around 10% would be false negatives). Weekly screening of health-care workers and other high-risk groups irrespective of symptoms by use of PCR testing is estimated to reduce their contribution to SARS-CoV-2 transmission by 23% (95% UI 16-40), on top of reductions achieved by self-isolation following symptoms, assuming results are available at 24 h. The effectiveness of test and trace depends strongly on coverage and the timelines

Journal article

Thompson H, Imai N, Dighe A, Ainslie K, Baguelin M, Bhatia S, Bhatt S, Boonyasiri A, Boyd O, Brazeau N, Cattarino L, Cooper L, Coupland H, Cucunuba Z, Cuomo-Dannenburg G, Djaafara B, Dorigatti I, van Elsland S, Fitzjohn R, Fu H, Gaythorpe K, Green W, Hallett T, Hamlet A, Haw D, Hayes S, Hinsley W, Jeffrey B, Knock E, Laydon D, Lees J, Mangal T, Mellan T, Mishra S, Mousa A, Nedjati-Gilani G, Nouvellet P, Okell L, Parag K, Ragonnet-Cronin M, Riley S, Unwin H, Verity R, Vollmer M, Volz E, Walker P, Walters C, Wang H, Wang Y, Watson O, Whittaker C, Whittles L, Winskill P, Xi X, Donnelly C, Ferguson Net al., 2020, SARS-CoV-2 infection prevalence on repatriation flights from Wuhan City, China, Journal of Travel Medicine, Vol: 27, Pages: 1-3, ISSN: 1195-1982

We estimated SARS-CoV-2 infection prevalence in cohorts of repatriated citizens from Wuhan to be 0.44% (95% CI: 0.19%–1.03%). Although not representative of the wider population we believe these estimates are helpful in providing a conservative estimate of infection prevalence in Wuhan City, China, in the absence of large-scale population testing early in the epidemic.

Journal article

Fountain-Jones NM, Appaw RC, Carver S, Didelot X, Volz E, Charleston Met al., 2020, Emerging phylogenetic structure of the SARS-CoV-2 pandemic., Virus Evol, Vol: 6, ISSN: 2057-1577

Since spilling over into humans, SARS-CoV-2 has rapidly spread across the globe, accumulating significant genetic diversity. The structure of this genetic diversity and whether it reveals epidemiological insights are fundamental questions for understanding the evolutionary trajectory of this virus. Here, we use a recently developed phylodynamic approach to uncover phylogenetic structures underlying the SARS-CoV-2 pandemic. We find support for three SARS-CoV-2 lineages co-circulating, each with significantly different demographic dynamics concordant with known epidemiological factors. For example, Lineage C emerged in Europe with a high growth rate in late February, just prior to the exponential increase in cases in several European countries. Non-synonymous mutations that characterize Lineage C occur in functionally important gene regions responsible for viral replication and cell entry. Even though Lineages A and B had distinct demographic patterns, they were much more difficult to distinguish. Continuous application of phylogenetic approaches to track the evolutionary epidemiology of SARS-CoV-2 lineages will be increasingly important to validate the efficacy of control efforts and monitor significant evolutionary events in the future.

Journal article

Okell LC, Verity R, Katzourakis A, Volz EM, Watson OJ, Mishra S, Walker P, Whittaker C, Donnelly CA, Riley S, Ghani AC, Gandy A, Flaxman S, Ferguson NM, Bhatt Set al., 2020, Host or pathogen-related factors in COVID-19 severity? Reply, LANCET, Vol: 396, Pages: 1397-1397, ISSN: 0140-6736

Journal article

Poletto C, Scarpino SV, Volz EM, 2020, Applications of predictive modelling early in the COVID-19 epidemic., The Lancet Digital Health, Vol: 2, Pages: e498-e499, ISSN: 2589-7500

Journal article

Ragonnet-Cronin M, Boyd O, Geidelberg L, Jorgensen D, Nascimento FF, Siveroni I, Johnson R, Baguelin M, Cucunubá ZM, Jauneikaite E, Mishra S, Thompson HA, Watson O, Ferguson N, Donnelly CA, Volz Eet al., 2020, COVID-19 epidemic severity is associated with timing of non-pharmaceutical interventions

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Unprecedented public health interventions including travel restrictions and national lockdowns have been implemented to stem the COVID-19 epidemic, but the effectiveness of non-pharmaceutical interventions is still debated. International comparisons are hampered by highly variable conditions under which epidemics spread and differences in the timing and scale of interventions. Cumulative COVID-19 morbidity and mortality are functions of both the rate of epidemic growth and the duration of uninhibited growth before interventions were implemented. Incomplete and sporadic testing during the early COVID-19 epidemic makes it difficult to identify how long SARS-CoV-2 was circulating in different places. SARS-CoV-2 genetic sequences can be analyzed to provide an estimate of both the time of epidemic origin and the rate of early epidemic growth in different settings.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>We carried out a phylogenetic analysis of more than 29,000 publicly available whole genome SARS-CoV-2 sequences from 57 locations to estimate the time that the epidemic originated in different places. These estimates were cross-referenced with dates of the most stringent interventions in each location as well as the number of cumulative COVID-19 deaths following maximum intervention. Phylodynamic methods were used to estimate the rate of early epidemic growth and proxy estimates of epidemic size.</jats:p></jats:sec><jats:sec><jats:title>Findings</jats:title><jats:p>The time elapsed between epidemic origin and maximum intervention is strongly associated with different measures of epidemic severity and explains 46% of variance in numbers infected at time of maximum intervention. The reproduction number is independently associated with epidemic severity. I

Journal article

Volz E, Wiuf C, Grad YH, Frost SDW, Dennis AM, Didelot Xet al., 2020, Identification of hidden population structure in time-scaled phylogenies, Systematic Biology, Vol: 69, Pages: 884-896, ISSN: 1063-5157

Abstract Population structure influences genealogical patterns, however data pertaining to how populations are structured are often unavailable or not directly observable. Inference of population structure is highly important in molecular epidemiology where pathogen phylogenetics is increasingly used to infer transmission patterns and detect outbreaks. Discrepancies between observed and idealised genealogies, such as those generated by the coalescent process, can be quantified, and where significant differences occur, may reveal the action of natural selection, host population structure, or other demographic and epidemiological heterogeneities. We have developed a fast non-parametric statistical test for detection of cryptic population structure in time-scaled phylogenetic trees. The test is based on contrasting estimated phylogenies with the theoretically expected phylodynamic ordering of common ancestors in two clades within a coalescent framework. These statistical tests have also motivated the development of algorithms which can be used to quickly screen a phylogenetic tree for clades which are likely to share a distinct demographic or epidemiological history. Epidemiological applications include identification of outbreaks in vulnerable host populations or rapid expansion of genotypes with a fitness advantage. To demonstrate the utility of these methods for outbreak detection, we applied the new methods to large phylogenies reconstructed from thousands of HIV-1 partial pol sequences. This revealed the presence of clades which had grown rapidly in the recent past, and was significantly concentrated in young men, suggesting recent and rapid transmission in that group. Furthermore, to demonstrate the utility of these methods for the study of antimicrobial resistance, we applied the new methods to a large phylogeny reconstructed from whole genome Neisseria gonorrhoeae sequences. We find that population structure detected using these methods closely overlaps with th

Journal article

Flaxman S, Mishra S, Gandy A, Unwin HJT, Mellan TA, Coupland H, Whittaker C, Zhu H, Berah T, Eaton JW, Monod M, Perez Guzman PN, Schmit N, Cilloni L, Ainslie K, Baguelin M, Boonyasiri A, Boyd O, Cattarino L, Cucunuba Perez Z, Cuomo-Dannenburg G, Dighe A, Djaafara A, Dorigatti I, van Elsland S, Fitzjohn R, Gaythorpe K, Geidelberg L, Grassly N, Green W, Hallett T, Hamlet A, Hinsley W, Jeffrey B, Knock E, Laydon D, Nedjati Gilani G, Nouvellet P, Parag K, Siveroni I, Thompson H, Verity R, Volz E, Walters C, Wang H, Watson O, Winskill P, Xi X, Walker P, Ghani AC, Donnelly CA, Riley SM, Vollmer MAC, Ferguson NM, Okell LC, Bhatt Set al., 2020, Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe, Nature, Vol: 584, Pages: 257-261, ISSN: 0028-0836

Following the emergence of a novel coronavirus1 (SARS-CoV-2) and its spread outside of China, Europe has experienced large epidemics. In response, many European countries have implemented unprecedented non-pharmaceutical interventions such as closure of schools and national lockdowns. We study the impact of major interventions across 11 European countries for the period from the start of COVID-19 until the 4th of May 2020 when lockdowns started to be lifted. Our model calculates backwards from observed deaths to estimate transmission that occurred several weeks prior, allowing for the time lag between infection and death. We use partial pooling of information between countries with both individual and shared effects on the reproduction number. Pooling allows more information to be used, helps overcome data idiosyncrasies, and enables more timely estimates. Our model relies on fixed estimates of some epidemiological parameters such as the infection fatality rate, does not include importation or subnational variation and assumes that changes in the reproduction number are an immediate response to interventions rather than gradual changes in behavior. Amidst the ongoing pandemic, we rely on death data that is incomplete, with systematic biases in reporting, and subject to future consolidation. We estimate that, for all the countries we consider, current interventions have been sufficient to drive the reproduction number Rt below 1 (probability Rt< 1.0 is 99.9%) and achieve epidemic control. We estimate that, across all 11 countries, between 12 and 15 million individuals have been infected with SARS-CoV-2 up to 4th May, representing between 3.2% and 4.0% of the population. Our results show that major non-pharmaceutical interventions and lockdown in particular have had a large effect on reducing transmission. Continued intervention should be considered to keep transmission of SARS-CoV-2 under control.

Journal article

Volz E, Hill V, McCrone JT, Price A, Jorgensen D, OToole Á, Southgate J, Johnson R, Jackson B, Nascimento FF, Rey SM, Nicholls SM, Colquhoun RM, da Silva Filipe A, Shepherd J, Pascall DJ, Shah R, Jesudason N, Li K, Jarrett R, Pacchiarini N, Bull M, Geidelberg L, Siveroni I, Goodfellow I, Loman NJ, Pybus OG, Robertson DL, Thomson EC, Rambaut A, Connor TRet al., 2020, Evaluating the effects of SARS-CoV-2 Spike mutation D614G on transmissibility and pathogenicity, Publisher: Cold Spring Harbor Laboratory

<jats:title>Summary</jats:title><jats:p>Global dispersal and increasing frequency of the SARS-CoV-2 Spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of Spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large data set, well represented by both Spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the Spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant.</jats:p>

Working paper

Fu H, Xi X, Wang H, Boonyasiri A, Wang Y, Hinsley W, Fraser K, McCabe R, Olivera Mesa D, Skarp J, Ledda A, Dewe T, Dighe A, Winskill P, van Elsland S, Ainslie K, Baguelin M, Bhatt S, Boyd O, Brazeau N, Cattarino L, Charles G, Coupland H, Cucunuba Perez Z, Cuomo-Dannenburg G, Donnelly C, Dorigatti I, Green W, Hamlet A, Hauck K, Haw D, Jeffrey B, Laydon D, Lees J, Mellan T, Mishra S, Nedjati Gilani G, Nouvellet P, Okell L, Parag K, Ragonnet-Cronin M, Riley S, Schmit N, Thompson H, Unwin H, Verity R, Vollmer M, Volz E, Walker P, Walters C, Watson O, Whittaker C, Whittles L, Imai N, Bhatia S, Ferguson Net al., 2020, Report 30: The COVID-19 epidemic trends and control measures in mainland China

Report

Aanensen DM, Abudahab K, Adams A, Afifi S, Alam MT, Alderton A, Alikhan N-F, Allan J, Almsaud M, Alrezaihi A, Alruwaili M, Amato R, Andersson M, Angyal A, Aranday-Cortes E, Ariani C, Armstrong SD, Asamaphan P, Attwood S, Aydin A, Badhan A, Baker D, Baker P, Balcazar CE, Ball J, Barton AE, Bashton M, Baxter L, Beale M, Beaver C, Beckett A, Beer R, Beggs A, Bell A, Bellis KL, Bentley EG, Berriman M, Betteridge E, Bibby D, Bicknell K, Birchley A, Black G, Blane B, Bloomfield S, Bolt F, Bonsall DG, Bosworth A, Bourgeois Y, Boyd O, Bradshaw D, Breuer J, Bridgewater H, Brooks T, Broos A, Brown JR, Brown RL, Brunker K, Bucca G, Buck D, Bull M, Butcher E, Caddy SL, Caller LG, Cambell S, Carlile M, Carmichael S, Carrilero L, Castellano S, Chaloner J, Chand M, Chapman MR, Chappell J, Charles I, Chauhan AJ, Chawla A, Cheng E, Churcher CM, Clark G, Clark JJ, Collins J, Colquhoun R, Connor TR, Constantinidou C, Coombes J, Corden S, Cottrell S, Cowell A, Curran MD, Curran T, Dabrera G, Danesh J, Darby AC, de Cesare M, Martins LDO, de Silva TI, Debebe B, Dervisevic S, Dewar RA, Dia M, Dorman M, Dougan G, Dover L, Downing F, Drury E, du Plessis L, Dyal PL, Eccles R, Edwards S, Ellaby N, Elliott S, Eltringham G, Elumogo N, Essex S, Evans CM, Evans J, Nascimento FF, Fairley DJ, Farr B, Feltwell T, Ferguson N, Filipe ADS, Findlay J, Forrest LM, Forrest S, Foulser L, Francois S, Fraser C, Frost L, Gallagher E, Gallagher MD, Garcia-Dorival I, Gaskin A, Gatica-Wilcox B, Gavriil A, Geidelberg L, Gemmell M, Gerada A, Gifford L, Gilbert L, Gilmore P, Gilroy R, Girgis S, Glaysher S, Golubchik T, Goncalves S, Goodfellow I, Goodwin S, Graham C, Graham L, Grammatopoulos D, Green A, Green LR, Greenaway J, Gregory R, Groves DC, Groves N, Guest M, Gunson R, Haldenby S, Hall G, Hamilton WL, Han X, Harris KA, Harrison EM, Hartley C, Herrera C, Hesketh A, Heyburn D, Hill V, Hiscox JA, Holden M, Holmes A, Holmes N, Holt GS, Hopes R, Hosmillo M, Houldcroft CJ, Howson-Wells H, Hubb J, Hughe J, Hughes Met al., 2020, An integrated national scale SARS-CoV-2 genomic surveillance network, The Lancet Microbe, Vol: 1, Pages: E99-E100, ISSN: 2666-5247

Journal article

Bhatia S, Imai N, Cuomo-Dannenburg G, Baguelin M, Boonyasiri A, Cori A, Cucunuba Perez Z, Dorigatti I, Fitzjohn R, Fu H, Gaythorpe K, Ghani A, Hamlet A, Hinsley W, Laydon D, Nedjati Gilani G, Okell L, Riley S, Thompson H, van Elsland S, Volz E, Wang H, Wang Y, Whittaker C, Xi X, Donnelly CA, Ferguson NMet al., 2020, Estimating the number of undetected COVID-19 cases among travellers from mainland China, Publisher: F1000 Research Ltd

Background: Since the start of the COVID-19 epidemic in late 2019, there have been more than 152 affected regions and countries with over 110,000 confirmed cases outside mainland China.Methods: We analysed COVID-19 cases among travellers from mainland China to different regions and countries, comparing the region- and country-specific rates of detected and confirmed cases per flight volume to estimate the relative sensitivity of surveillance in different regions and countries.Results: Although travel restrictions from Wuhan City and other cities across China may have reduced the absolute number of travellers to and from China, we estimated that more than two thirds (70%, 95% CI: 54% - 80%, compared to Singapore; 75%, 95% CI: 66% - 82%, compared to multiple countries) of cases exported from mainland China have remained undetected.Conclusions: These undetected cases potentially resulted in multiple chains of human-to-human transmission outside mainland China.

Working paper

Nouvellet P, Bhatia S, Cori A, Ainslie K, Baguelin M, Bhatt S, Boonyasiri A, Brazeau N, Cattarino L, Cooper L, Coupland H, Cucunuba Perez Z, Cuomo-Dannenburg G, Dighe A, Djaafara A, Dorigatti I, Eales O, van Elsland S, Nscimento F, Fitzjohn R, Gaythorpe K, Geidelberg L, Grassly N, Green W, Hamlet A, Hauck K, Hinsley W, Imai N, Jeffrey B, Knock E, Laydon D, Lees J, Mangal T, Mellan T, Nedjati Gilani G, Parag K, Pons Salort M, Ragonnet-Cronin M, Riley S, Unwin H, Verity R, Vollmer M, Volz E, Walker P, Walters C, Wang H, Watson O, Whittaker C, Whittles L, Xi X, Ferguson N, Donnelly Cet al., 2020, Report 26: Reduction in mobility and COVID-19 transmission

In response to the COVID-19 pandemic, countries have sought to control transmission of SARS-CoV-2by restricting population movement through social distancing interventions, reducing the number ofcontacts.Mobility data represent an important proxy measure of social distancing. Here, we develop aframework to infer the relationship between mobility and the key measure of population-level diseasetransmission, the reproduction number (R). The framework is applied to 53 countries with sustainedSARS-CoV-2 transmission based on two distinct country-specific automated measures of humanmobility, Apple and Google mobility data.For both datasets, the relationship between mobility and transmission was consistent within andacross countries and explained more than 85% of the variance in the observed variation intransmissibility. We quantified country-specific mobility thresholds defined as the reduction inmobility necessary to expect a decline in new infections (R<1).While social contacts were sufficiently reduced in France, Spain and the United Kingdom to controlCOVID-19 as of the 10th of May, we find that enhanced control measures are still warranted for themajority of countries. We found encouraging early evidence of some decoupling of transmission andmobility in 10 countries, a key indicator of successful easing of social-distancing restrictions.Easing social-distancing restrictions should be considered very carefully, as small increases in contactrates are likely to risk resurgence even where COVID-19 is apparently under control. Overall, strongpopulation-wide social-distancing measures are effective to control COVID-19; however gradualeasing of restrictions must be accompanied by alternative interventions, such as efficient contacttracing, to ensure control.

Report

Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, Cuomo-Dannenburg G, Thompson H, Walker PGT, Fu H, Dighe A, Griffin JT, Baguelin M, Bhatia S, Boonyasiri A, Cori A, Cucunubá Z, FitzJohn R, Gaythorpe K, Green W, Hamlet A, Hinsley W, Laydon D, Nedjati-Gilani G, Riley S, van Elsland S, Volz E, Wang H, Wang Y, Xi X, Donnelly CA, Ghani AC, Ferguson NMet al., 2020, Estimates of the severity of coronavirus disease 2019: a model-based analysis., Lancet Infectious Diseases, Vol: 20, Pages: 669-677, ISSN: 1473-3099

BACKGROUND: In the face of rapidly changing data, a range of case fatality ratio estimates for coronavirus disease 2019 (COVID-19) have been produced that differ substantially in magnitude. We aimed to provide robust estimates, accounting for censoring and ascertainment biases. METHODS: We collected individual-case data for patients who died from COVID-19 in Hubei, mainland China (reported by national and provincial health commissions to Feb 8, 2020), and for cases outside of mainland China (from government or ministry of health websites and media reports for 37 countries, as well as Hong Kong and Macau, until Feb 25, 2020). These individual-case data were used to estimate the time between onset of symptoms and outcome (death or discharge from hospital). We next obtained age-stratified estimates of the case fatality ratio by relating the aggregate distribution of cases to the observed cumulative deaths in China, assuming a constant attack rate by age and adjusting for demography and age-based and location-based under-ascertainment. We also estimated the case fatality ratio from individual line-list data on 1334 cases identified outside of mainland China. Using data on the prevalence of PCR-confirmed cases in international residents repatriated from China, we obtained age-stratified estimates of the infection fatality ratio. Furthermore, data on age-stratified severity in a subset of 3665 cases from China were used to estimate the proportion of infected individuals who are likely to require hospitalisation. FINDINGS: Using data on 24 deaths that occurred in mainland China and 165 recoveries outside of China, we estimated the mean duration from onset of symptoms to death to be 17·8 days (95% credible interval [CrI] 16·9-19·2) and to hospital discharge to be 24·7 days (22·9-28·1). In all laboratory confirmed and clinically diagnosed cases from mainland China (n=70 117), we estimated a crude case fatality ratio (adjusted for cen

Journal article

Grassly N, Pons Salort M, Parker E, White P, Ainslie K, Baguelin M, Bhatt S, Boonyasiri A, Boyd O, Brazeau N, Cattarino L, Ciavarella C, Cooper L, Coupland H, Cucunuba Perez Z, Cuomo-Dannenburg G, Dighe A, Djaafara A, Donnelly C, Dorigatti I, van Elsland S, Ferreira Do Nascimento F, Fitzjohn R, Fu H, Gaythorpe K, Geidelberg L, Green W, Hallett T, Hamlet A, Hayes S, Hinsley W, Imai N, Jorgensen D, Knock E, Laydon D, Lees J, Mangal T, Mellan T, Mishra S, Nedjati Gilani G, Nouvellet P, Okell L, Ower A, Parag K, Pickles M, Ragonnet-Cronin M, Stopard I, Thompson H, Unwin H, Verity R, Vollmer M, Volz E, Walker P, Walters C, Wang H, Wang Y, Watson O, Whittaker C, Whittles L, Winskill P, Xi X, Ferguson Net al., 2020, Report 16: Role of testing in COVID-19 control

The World Health Organization has called for increased molecular testing in response to the COVID-19 pandemic, but different countries have taken very different approaches. We used a simple mathematical model to investigate the potential effectiveness of alternative testing strategies for COVID-19 control. Weekly screening of healthcare workers (HCWs) and other at-risk groups using PCR or point-of-care tests for infection irrespective of symptoms is estimated to reduce their contribution to transmission by 25-33%, on top of reductions achieved by self-isolation following symptoms. Widespread PCR testing in the general population is unlikely to limit transmission more than contact-tracing and quarantine based on symptoms alone, but could allow earlier release of contacts from quarantine. Immunity passports based on tests for antibody or infection could support return to work but face significant technical, legal and ethical challenges. Testing is essential for pandemic surveillance but its direct contribution to the prevention of transmission is likely to be limited to patients, HCWs and other high-risk groups.

Report

Maurano MT, Ramaswami S, Zappile P, Dimartino D, Boytard L, Ribeiro-Dos-Santos AM, Vulpescu NA, Westby G, Shen G, Feng X, Hogan MS, Ragonnet-Cronin M, Geidelberg L, Marier C, Meyn P, Zhang Y, Cadley J, Ordoñez R, Luther R, Huang E, Guzman E, Arguelles-Grande C, Argyropoulos KV, Black M, Serrano A, Call ME, Kim MJ, Belovarac B, Gindin T, Lytle A, Pinnell J, Vougiouklakis T, Chen J, Lin LH, Rapkiewicz A, Raabe V, Samanovic MI, Jour G, Osman I, Aguero-Rosenfeld M, Mulligan MJ, Volz EM, Cotzia P, Snuderl M, Heguy Aet al., 2020, Sequencing identifies multiple, early introductions of SARS-CoV2 to New York City Region., medRxiv

Effective public response to a pandemic relies upon accurate measurement of the extent and dynamics of an outbreak. Viral genome sequencing has emerged as a powerful approach to link seemingly unrelated cases, and large-scale sequencing surveillance can inform on critical epidemiological parameters. Here, we report the analysis of 236 SARS-CoV2 sequences from cases in the New York City metropolitan area during the initial stages of the 2020 COVID-19 outbreak. The majority of cases throughout the region had no recent travel history or known exposure, and genetically linked cases were spread throughout the region. Comparison to global viral sequences showed that the majority were most related to cases from Europe. Our data are consistent with numerous seed transmissions from multiple sources and a prolonged period of unrecognized community spreading. This work highlights the complementary role of real-time genomic surveillance in addition to traditional epidemiological indicators.

Journal article

Ferguson N, Laydon D, Nedjati Gilani G, Imai N, Ainslie K, Baguelin M, Bhatia S, Boonyasiri A, Cucunuba Perez Z, Cuomo-Dannenburg G, Dighe A, Dorigatti I, Fu H, Gaythorpe K, Green W, Hamlet A, Hinsley W, Okell L, van Elsland S, Thompson H, Verity R, Volz E, Wang H, Wang Y, Walker P, Walters C, Winskill P, Whittaker C, Donnelly C, Riley S, Ghani Aet al., 2020, Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand

The global impact of COVID-19 has been profound, and the public health threat it represents is the most serious seen in a respiratory virus since the 1918 H1N1 influenza pandemic. Here we present the results of epidemiological modelling which has informed policymaking in the UK and other countries in recent weeks. In the absence of a COVID-19 vaccine, we assess the potential role of a number of public health measures – so-called non-pharmaceutical interventions (NPIs) – aimed at reducing contact rates in the population and thereby reducing transmission of the virus. In the results presented here, we apply a previously published microsimulation model to two countries: the UK (Great Britain specifically) and the US. We conclude that the effectiveness of any one intervention in isolation is likely to be limited, requiring multiple interventions to be combined to have a substantial impact on transmission. Two fundamental strategies are possible: (a) mitigation, which focuses on slowing but not necessarily stopping epidemic spread – reducing peak healthcare demand while protecting those most at risk of severe disease from infection, and (b) suppression, which aims to reverse epidemic growth, reducing case numbers to low levels and maintaining that situation indefinitely. Each policy has major challenges. We find that that optimal mitigation policies (combining home isolation of suspect cases, home quarantine of those living in the same household as suspect cases, and social distancing of the elderly and others at most risk of severe disease) might reduce peak healthcare demand by 2/3 and deaths by half. However, the resulting mitigated epidemic would still likely result in hundreds of thousands of deaths and health systems (most notably intensive care units) being overwhelmed many times over. For countries able to achieve it, this leaves suppression as the preferred policy option. We show that in the UK and US context, suppression will minimally requi

Report

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00802714&limit=30&person=true