Imperial College London

Professor Fernando Bresme

Faculty of Natural SciencesDepartment of Chemistry

Professor of Chemical Physics
 
 
 
//

Contact

 

+44 (0)20 7594 5886f.bresme Website

 
 
//

Assistant

 

Mrs Althea Hartley-Forbes +44 (0)20 7594 5717

 
//

Location

 

165ChemistrySouth Kensington Campus

//

Summary

 

Summary

Welcome to the Computational Chemical Physics group at Imperial College

ccp

 

 

Our research is concerned with the computational and theoretical investigation of the structure and dynamics of complex interfaces of chemical relevance; colloids, biopolymers, membranes and nanomaterials, which form the buiding blocks of soft materials. The interfacial physico-chemical behaviour often confers striking properties to these materials, by mediating and promoting a whole range of chemical processes.  

One of our main areas of interest is the investigation of transport phenomena at nanoscale interfaces. Current efforts are directed towards the development of computational tools to quantify energy transport across these interfaces, and the application of these tools to design high performance materials for energy management problems (e.g., super-insulating and highly conductive media) and nanomaterials with chemical and medical applications (e.g. catalysis, medical therapies).

We are particularly interested in the investigation of novel physical concepts for energy conversion and energy recovery applications  (e.g., recovery of waste heat).

We have discovered that thermal gradients can polarize water (se Phys. Rev. Lett. 101, 020602 (2008)). This can be a particularly strong effect at high temperatures. The physical origin of this effect is connected to the coupling of a polarization current and the heat flux (see e.g., the Synopsis Polarization in Hot Water published by the AIP). We are currently investigating the relevance of this effect in practical applications as well as in the general area of thermophoresis. This thermal orientation effect is also observed in other molecular structures as shown by coarse grained simulations (http://dx.doi.org/10.1103/PhysRevLett.108.105901).

In our group we combine non-equilibrium and equilibrium computer simulations, non-equilibrium thermodynamics theory and experiments to investigate the equilibrium and non-equilibrium response of soft matterials.

If you are interested in A PostDoc OR A PhD position in our group please contact me at: fbresme@imperial.ac.uk

 

OPEN POSITIONS IN THE CCP GROUP


  • Applications are invited for Science and Solutions for a Changing Planet DTP fully funded NERC studentships for 2017/18. Please check our studentship Dynamic viscosity mapping in atmospheric aerosol particles (collaboration between Prof. Bresme's and Dr. Kuimova's groups)
  • Each year, the Department of Chemistry awards 10 Chemistry Doctoral Scholarships to outstanding PhD applicants. Successful Scholars will receive full tuition fees and a stipend at advertised EPSRC rates for a PhD place in the Department of Chemistry at Imperial College London. We welcome applications from dedicated and talented students, with the drive to conduct PhD research. Eligibility: Applicants should be a U.K. citizen or an EU national who has been in the U.K. for at least 3 years. 

RESEARCH AREAS

FUNCTIONALIZATION OF FLUID INTERFACES

SIMULATION OF NANOSCALE INTERFACES 

 BIOINTERFACES

MOLECULAR MOTORS AND ENERGY CONVERSION

 

 SCHOOL

ness

NON-EQUILIBRIUM SIMULATION SCHOOL, NESS

CONFERENCES

 

COMPUTATIONAL CHEMICAL PHYSICS GROUP

Group picture November 2015:

From right to left:

(Front) Silvia, Irene, Miguel Angel, Katherine

(Back) Juan, Anna-Sofia, Fernando, James, Kaspars, Bjorn, Goran and Niall. 

Not in the picture: Stephen, Yash and Chris (Trondheim).

Group Picture : November 2015

 

k

From right to left: Anders, Ryan, James, Wendy, Silvia, Anna Sofia, Irene, Jeff, Niall and Fernando.

Publications

Journals

Armstrong J, Mukhopadhyay S, Bresme F, et al., 2016, Heads or tails: how do chemically substituted fullerenes melt?, Physical Chemistry Chemical Physics, Vol:18, ISSN:1463-9076, Pages:17202-17209

Daub CD, Tafjord J, Kjelstrup S, et al., 2016, Molecular alignment in molecular fluids induced by coupling between density and thermal gradients, Physical Chemistry Chemical Physics, Vol:18, ISSN:1463-9076, Pages:12213-12220

Iriarte-Carretero I, Gonzalez MA, Armstrong J, et al., 2016, The rich phase behavior of the thermopolarization of water: from a reversal in the polarization, to enhancement near criticality conditions, Physical Chemistry Chemical Physics, Vol:18, ISSN:1463-9076, Pages:19894-19901

Jackson N, Miguel Rubi J, Bresme F, 2016, Non-equilibrium molecular dynamics simulations of the thermal transport properties of Lennard-Jones fluids using configurational temperatures, Molecular Simulation, Vol:42, ISSN:0892-7022, Pages:1214-1222

Mohammad-Aghaie D, Bresme F, 2016, Force-field dependence on the liquid-expanded to liquid-condensed transition in DPPC monolayers, Molecular Simulation, Vol:42, ISSN:0892-7022, Pages:391-397

More Publications