Imperial College London

Francesca Tallia

Faculty of EngineeringDepartment of Materials

Research Associate
 
 
 
//

Contact

 

f.tallia Website

 
 
//

Location

 

LM04Royal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

6 results found

Autefage H, Allen F, Tang HM, Kallepitis C, Gentleman E, Reznikov N, Nitiputri K, Nommeots-Nomm A, O'Donnell MD, Lange C, Seidt BM, Kim TB, Solanki AK, Tallia F, Young G, Lee PD, Pierce BF, Wagermaier W, Fratzl P, Goodship A, Jones JR, Blunn G, Stevens MMet al., 2019, Multiscale analyses reveal native-like lamellar bone repair and near perfect bone-contact with porous strontium-loaded bioactive glass., Biomaterials, Vol: 209, Pages: 152-162

The efficient healing of critical-sized bone defects using synthetic biomaterial-based strategies is promising but remains challenging as it requires the development of biomaterials that combine a 3D porous architecture and a robust biological activity. Bioactive glasses (BGs) are attractive candidates as they stimulate a biological response that favors osteogenesis and vascularization, but amorphous 3D porous BGs are difficult to produce because conventional compositions crystallize during processing. Here, we rationally designed a porous, strontium-releasing, bioactive glass-based scaffold (pSrBG) whose composition was tailored to deliver strontium and whose properties were optimized to retain an amorphous phase, induce tissue infiltration and encourage bone formation. The hypothesis was that it would allow the repair of a critical-sized defect in an ovine model with newly-formed bone exhibiting physiological matrix composition and structural architecture. Histological and histomorphometric analyses combined with indentation testing showed pSrBG encouraged near perfect bone-to-material contact and the formation of well-organized lamellar bone. Analysis of bone quality by a combination of Raman spectral imaging, small-angle X-ray scattering, X-ray fluorescence and focused ion beam-scanning electron microscopy demonstrated that the repaired tissue was akin to that of normal, healthy bone, and incorporated small amounts of strontium in the newly formed bone mineral. These data show the potential of pSrBG to induce an efficient repair of critical-sized bone defects and establish the importance of thorough multi-scale characterization in assessing biomaterial outcomes in large animal models.

JOURNAL ARTICLE

Tallia F, Russo L, Li S, Orrin ALH, Shi X, Chen S, Steele JAM, Meille S, Chevalier J, Lee PD, Stevens MM, Cipolla L, Jones JRet al., 2018, Bouncing and 3D printable hybrids with self-healing properties, MATERIALS HORIZONS, Vol: 5, Pages: 849-860, ISSN: 2051-6347

JOURNAL ARTICLE

Dadkhah M, Pontiroli L, Fiorilli S, Manca A, Tallia F, Tcacencu I, Vitale-Brovarone Cet al., 2017, Preparation and characterisation of an innovative injectable calcium sulphate based bone cement for vertebroplasty application, JOURNAL OF MATERIALS CHEMISTRY B, Vol: 5, Pages: 102-115, ISSN: 2050-750X

JOURNAL ARTICLE

Balasubramanian P, Gruenewald A, Detsch R, Hupa L, Jokic B, Tallia F, Solanki AK, Jones JR, Boccaccini ARet al., 2016, Ion Release, Hydroxyapatite Conversion, and Cytotoxicity of Boron-Containing Bioactive Glass Scaffolds, INTERNATIONAL JOURNAL OF APPLIED GLASS SCIENCE, Vol: 7, Pages: 206-215, ISSN: 2041-1286

JOURNAL ARTICLE

Tallia F, Gallo M, Pontiroli L, Baino F, Fiorilli S, Onida B, Anselmetti GC, Manca A, Vitale-Brovarone Cet al., 2014, Zirconia-containing radiopaque mesoporous bioactive glasses, MATERIALS LETTERS, Vol: 130, Pages: 281-284, ISSN: 0167-577X

JOURNAL ARTICLE

Vitale-Brovarone C, Baino F, Tallia F, Gervasio C, Verne Eet al., 2012, Bioactive glass-derived trabecular coating: a smart solution for enhancing osteointegration of prosthetic elements, JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, Vol: 23, Pages: 2369-2380, ISSN: 0957-4530

JOURNAL ARTICLE

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00778180&limit=30&person=true