Imperial College London

Dr Gareth Collins

Faculty of EngineeringDepartment of Earth Science & Engineering

Reader in Planetary Science
 
 
 
//

Contact

 

+44 (0)20 7594 1518g.collins Website

 
 
//

Location

 

4.83Royal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

105 results found

Davison TM, Derrick JG, Collins GS, Bland PA, Rutherford ME, Chapman DJ, Eakins DEet al., Impact-induced compaction of primitive solar system solids: The need for mesoscale modelling and experiments, Procedia Engineering, ISSN: 1877-7058

Primitive solar system solids were accreted as highly porous bimodal mixtures of mm-sized chondrules and sub-μm matrix grains. To understand the compaction and lithification of these materials by shock, it is necessary to investigate the process at the mesoscale; i.e., the scale of individual chondrules. Here we document simulations of hypervelocity compaction of primitive materials using the iSALE shock physics model. We compare the numerical methods employed here with shock compaction experiments involving bimodal mixtures of glass beads and silica powder and find good agreement in bulk material response between the experiments and models. The heterogeneous response to shock of bimodal porous mixtures with a composition more appropriate for primitive solids was subsequently investigated: strong temperature dichotomies between the chondrules and matrix were observed (non-porous chondrules remained largely cold, while the porous matrix saw temperature increases of 100’s K). Matrix compaction was heterogeneous, and post-shock porosity was found to be lower on the lee-side of chondrules. The strain in the matrix was shown to be higher near the chondrule rims, in agreement with observations from meteorites. Chondrule flattening in the direction of the shock increases with increasing impact velocity, with flattened chondrules oriented with their semi-minor axis parallel to the shock direction.

JOURNAL ARTICLE

Muxworthy AR, Bland PA, Davison TM, Moore J, Collins GS, Ciesla FJet al., Evidence for an impact-induced magnetic fabric in Allende, and exogenous alternatives to the core dynamo theory for Allende magnetization, Meteoritics & Planetary Science, ISSN: 1086-9379

We conducted a paleomagnetic study of the matrix of Allende CV3 chondritic meteorite, isolating the matrix’s primary remanent magnetization, measuring its magnetic fabric and estimating the ancient magnetic field intensity. A strong planar magnetic fabric was identified; the remanent magnetization of the matrix was aligned within this plane, suggesting a mechanism relating the magnetic fabric and remanence. The intensity of the matrix’s remanent magnetization was found to be consistent and low (~6 μT). The primary magnetic mineral was found to be pyrrhotite. Given the thermal history of Allende, we conclude that the remanent magnetization formed during or after an impact event. Recent mesoscale impact mode ling, where chondrules and matrix are resolved, has shown that low-velocity collisions can generate significant matrix temperatures, as pore-space compaction attenuates shock energy and dramatically increases the amount of heating. Non-porous chondrules are unaffected, and act as heat-sinks, so matrix temperature excursions are brief. We extend this work to model Allende, and show that a 1km/s planar impact generates bulk porosity, matrix porosity, and fabric in our target that match the observed values. Bimodal mixtures of a highly porous matrix and nominally zero-porosity chondrules, make chondrites uniquely capable of recording transient or unstable fields. Targets that have uniform porosity, e.g., terrestrial impact craters, will not record transient or unstable fields. Rather than a core dynamo, it is therefore possible that the origin of the magnetic field in Allende was the impact itself, or a nebula field recorded during transient impact heating.

JOURNAL ARTICLE

Watters WA, Hundal CB, Radford A, Collins GS, Tornabene LLet al., Dependence of secondary crater characteristics on downrange distance: high-resolution morphometry and simulations, Journal of Geophysical Research: Planets, ISSN: 2169-9097

JOURNAL ARTICLE

Collins GS, Collins GS, 2017, Moon formation: Punch combo or knock-out blow?, Nature Geoscience, Vol: 10, Pages: 72-73, ISSN: 1752-0894

JOURNAL ARTICLE

Collins GS, Lynch E, Mcadam R, Davison TM, Collins GS, Lynch E, McAdam R, Davison TM, Collins GS, Lynch E, McAdam R, Davison TMet al., 2017, A numerical assessment of simple airblast models of impact airbursts, Meteoritics and Planetary Science, ISSN: 1086-9379

© 2017 The Meteoritical Society. Asteroids and comets 10-100 m in size that collide with Earth disrupt dramatically in the atmosphere with an explosive transfer of energy, caused by extreme air drag. Such airbursts produce a strong blastwave that radiates from the meteoroid's trajectory and can cause damage on the surface. An established technique for predicting airburst blastwave damage is to treat the airburst as a static source of energy and to extrapolate empirical results of nuclear explosion tests using an energy-based scaling approach. Here we compare this approach to two more complex models using the iSALE shock physics code. We consider a moving-source airburst model where the meteoroid's energy is partitioned as two-thirds internal energy and one-third kinetic energy at the burst altitude, and a model in which energy is deposited into the atmosphere along the meteoroid's trajectory based on the pancake model of meteoroid disruption. To justify use of the pancake model, we show that it provides a good fit to the inferred energy release of the 2013 Chelyabinsk fireball. Predicted overpressures from all three models are broadly consistent at radial distances from ground zero that exceed three times the burst height. At smaller radial distances, the moving-source model predicts overpressures two times greater than the static-source model, whereas the cylindrical line-source model based on the pancake model predicts overpressures two times lower than the static-source model. Given other uncertainties associated with airblast damage predictions, the static-source approach provides an adequate approximation of the azimuthally averaged airblast for probabilistic hazard assessment.

JOURNAL ARTICLE

Forman LV, Bland PA, Timms NE, Daly L, Benedix GK, Trimby PW, Collins GS, Davison TM, Forman LV, Bland PA, Timms NE, Daly L, Benedix GK, Trimby PW, Collins GS, Davison TM, Forman LV, Bland PA, Timms NE, Daly L, Benedix GK, Trimby PW, Collins GS, Davison TM, Forman LV, Bland PA, Timms NE, Daly L, Benedix GK, Trimby PW, Collins GS, Davison TMet al., 2017, Defining the mechanism for compaction of the CV chondrite parent body, GEOLOGY, Vol: 45, Pages: 559-562, ISSN: 0091-7613

© 2017 Geological Society of America. The Allende meteorite, a relatively unaltered member of the CV carbonaceous chondrite group, contains primitive crystallographic textures that can inform our understanding of early Solar System planetary compaction. To test between models of porosity reduction on the CV parent body, complex microstructures within ~0.5-mm-diameter chondrules and ~10-μm-long matrix olivine grains were analyzed by electron backscatter diffraction (EBSD) techniques. The large area map presented is one of the most extensive EBSD maps to have been collected in application to extraterrestrial materials. Chondrule margins preferentially exhibit limited intragrain crystallographic misorientation due to localized crystal-plastic deformation. Crystallographic preferred orientations (CPOs) preserved by matrix olivine grains are strongly coupled to grain shape, most pronounced in shortest dimension < a > , yet are locally variable in orientation and strength. Lithostatic pressure within plausible chondritic model asteroids is not sufficient to drive compaction or create the observed microstructures if the aggregate was cold. Significant local variability in the orientation and intensity of compaction is also inconsistent with a global process. Detailed microstructures indicative of crystal-plastic deformation are consistent with brief heating events that were small in magnitude. When combined with a lack of sintered grains and the spatially heterogeneous CPO, ubiquitous hot isostatic pressing is unlikely to be responsible. Furthermore, Allende is the most metamorphosed CV chondrite, so if sintering occurred at all on the CV parent body it would be evident here. We conclude that the crystallographic textures observed reflect impact compaction and indicate shock-wave directionality. We therefore present some of the first significant evidence for shock compaction of the CV parent body.

JOURNAL ARTICLE

Jourdan F, Timms NE, Eroglu E, Mayers C, Free A, Bland PA, Collins G, Davison T, Abe M, Yada Tet al., 2017, Collisional history of asteroid Itokawa, Geology, ISSN: 1943-2682

In situ extrate rrestrial samples returned for study (e.g., from the Moon) are crucial in understanding the origin and evolution of the Solar System as, contrary to meteorites, they provide a known geological context for the samples and their analyses. Asteroid 25143 Itokawa is a rubble pile asteroid consisting of reaccumulated fragments from a catastrophically disrupted monolithic parent asteroid, and from which regolith dust particles have been recovered by the Hayabusa space probe. We analyzed two dust particles using Electron Backscatter Diffraction (EBSD) and 40 Ar/39 Ar dating techniques. One of the grains showing signs of 15–25 GPa impact shock pressure, yielded a 40 Ar/Ar plateau age of 2.3 ± 0.1 Ga. We develop a novel temperature -pressure-porosity model, coupled with diffusion models to show that the relatively low pressure and high temperature involved in the impact process can be reconciled only if the asteroid was already made of porous material at ~2.3 Ga and thus, if asteroid Itokawa was already formed, thereby providing a minimum age for catastrophic asteroid breakup. A second particle shows no sign of deformation indicating shock pressure of ˂ 10 GPa and a calculated maximum temperature of ~200 °C. This low temperature estimate is compatible with a lack of isotopic resetting for this particle. This suggests that the breakup of Itokawa’s parent was a relatively low-temperature process at the scale of the asteroid, and occurred on a pre-shattered parent body.

JOURNAL ARTICLE

Rae ASP, Collins GS, Grieve RAF, Osinski GR, Morgan JV, Rae ASP, Collins GS, Grieve RAF, Osinski GR, Morgan JV, Rae ASP, Collins GS, Grieve RAF, Osinski GR, Morgan JV, Rae A, Collins GS, Grieve RAF, Osinki GR, Morgan JVet al., 2017, Complex crater formation: Insights from combining observations of shock pressure distribution with numerical models at the West Clearwater Lake impact structure, METEORITICS & PLANETARY SCIENCE, Vol: 52, Pages: 1330-1350, ISSN: 1086-9379

© 2017 The Authors. Meteoritics & Planetary Science published by Wiley Periodicals, Inc. on behalf of The Meteoritical Society Large impact structures have complex morphologies, with zones of structural uplift that can be expressed topographically as central peaks and/or peak rings internal to the crater rim. The formation of these structures requires transient strength reduction in the target material and one of the proposed mechanisms to explain this behavior is acoustic fluidization. Here, samples of shock-metamorphosed quartz-bearing lithologies at the West Clearwater Lake impact structure, Canada, are used to estimate the maximum recorded shock pressures in three dimensions across the crater. These measurements demonstrate that the currently observed distribution of shock metamorphism is strongly controlled by the formation of the structural uplift. The distribution of peak shock pressures, together with apparent crater morphology and geological observations, is compared with numerical impact simulations to constrain parameters used in the block-model implementation of acoustic fluidization. The numerical simulations produce craters that are consistent with morphological and geological observations. The results show that the regeneration of acoustic energy must be an important feature of acoustic fluidization in crater collapse, and should be included in future implementations. Based on the comparison between observational data and impact simulations, we conclude that the West Clearwater Lake structure had an original rim (final crater) diameter of 35–40 km and has since experienced up to ~2 km of differential erosion.

JOURNAL ARTICLE

Rutherford ME, Chapman DJ, Derrick JG, Patten JRW, Bland PA, Rack A, Collins GS, Eakins DE, Rutherford ME, Chapman DJ, Derrick JG, Patten JRW, Bland PA, Rack A, Collins GS, Eakins DE, Rutherford ME, Chapman DJ, Derrick JG, Patten JRW, Bland PA, Rack A, Collins GS, Eakins DE, Rutherford ME, Chapman DJ, Derrick JG, Patten JRW, Bland PA, Rack A, Collins GS, Eakins DE, Rutherford ME, Chapman DJ, Derrick JG, Patten JRW, Bland PA, Rack A, Collins GS, Eakins DE, Rutherford ME, Chapman DJ, Derrick JG, Patten JRW, Bland PA, Rack A, Collins GS, Eakins DEet al., 2017, Probing the early stages of shock-induced chondritic meteorite formation at the mesoscale, SCIENTIFIC REPORTS, Vol: 7, Pages: 45206-45206, ISSN: 2045-2322

Chondritic meteorites are fragments of asteroids, the building blocks of planets, that retain a record of primordial processes. Important in their early evolution was impact-driven lithification, where a porous mixture of millimetre-scale chondrule inclusions and sub-micrometre dust was compacted into rock. In this Article, the shock compression of analogue precursor chondrite material was probed using state of the art dynamic X-ray radiography. Spatially-resolved shock and particle velocities, and shock front thicknesses were extracted directly from the radiographs, representing a greatly enhanced scope of data than could be measured in surface-based studies. A statistical interpretation of the measured velocities showed that mean values were in good agreement with those predicted using continuum-level modelling and mixture theory. However, the distribution and evolution of wave velocities and wavefront thicknesses were observed to be intimately linked to the mesoscopic structure of the sample. This Article provides the first detailed experimental insight into the distribution of extreme states within a shocked powder mixture, and represents the first mesoscopic validation of leading theories concerning the variation in extreme pressure-temperature states during the formation of primordial planetary bodies.

JOURNAL ARTICLE

Smith R, 2017, Numerical modelling of tsunami generated by deformable submarine slides

Submarine slides can generate tsunami waves that cause significant damage and loss of life. Numerical modelling of submarine slide generated waves is complex and computationally challenging, but is useful to understand the nature of the waves that are generated, and identify the important factors in determining wave characteristics which in turn are used in risk assessments. In this work, the open-source, finite-element, unstructured mesh fluid dynamics framework Fluidity is used to simulate submarine slide tsunami using a number of different numerical approaches. First, three alternative approaches for simulating submarine slide acceleration, deformation and wave generation with full coupling between the slide and water in two dimensions are compared. Each approach is verified against benchmarks from experimental and other numerical studies, at different scales, for deformable submarine slides. There is good agreement to both laboratory results and other numerical models, both with a fixed mesh and a dynamically adaptive mesh, tracking important features of the slide geometry as the simulation progresses. Second, Fluidity is also used in a single-layer Bousinesq approximation in conjunction with a prescribed velocity boundary condition to model the propagation of slide tsunami in two and three dimensions. A new, efficient approach for submarine slide tsunami that accounts for slide dynamics and deformation is developed by imposing slide dynamics, derived from multi-material simulations. Two submarine slides are simulated in the Atlantic Ocean, and these generate waves up to 10 m high at the coast of the British Isles. Results indicate the largest waves are generated in the direction of slide motion. The lowest waves are generated perpendicular to the slide motion. The slide velocity and acceleration are the most important factors in determining wave height. Slides that deform generate higher waves than rigid slides, although this effect is of secondary importance f

THESIS DISSERTATION

Baker DMH, Head JW, Collins GS, Potter RWK, Baker DMH, Head JW, Collins GS, Potter RWK, Baker DMH, Head JW, Collins GS, Potter RWK, Baker DMH, Head JW, Collins GS, Potter RWKet al., 2016, The formation of peak-ring basins: Working hypotheses and path forward in using observations to constrain models of impact-basin formation, ICARUS, Vol: 273, Pages: 146-163, ISSN: 0019-1035

© 2015 Elsevier Inc. Impact basins provide windows into the crustal structure and stratigraphy of planetary bodies; however, interpreting the stratigraphic origin of basin materials requires an understanding of the processes controlling basin formation and morphology. Peak-ring basins (exhibiting a rim crest and single interior ring of peaks) provide important insight into the basin-formation process, as they are transitional between complex craters with central peaks and larger multi-ring basins. New image and altimetry data from the Lunar Reconnaissance Orbiter as well as a suite of remote sensing datasets have permitted a reassessment of the origin of lunar peak-ring basins. We synthesize morphometric, spectroscopic, and gravity observations of lunar peak-ring basins and describe two working hypotheses for the formation of peak rings that involve interactions between inward collapsing walls of the transient cavity and large central uplifts of the crust and mantle. Major facets of our observations are then compared and discussed in the context of numerical simulations of peak-ring basin formation in order to plot a course for future model refinement and development.

JOURNAL ARTICLE

Davison TM, Collins GS, Bland PA, Davison TM, Collins GS, Bland PA, Davison TM, Collins GS, Bland PA, Davison TM, Collins GS, Bland PA, Davison TM, Collins G, Bland Pet al., 2016, MESOSCALE MODELING OF IMPACT COMPACTION OF PRIMITIVE SOLAR SYSTEM SOLIDS, ASTROPHYSICAL JOURNAL, Vol: 821, Pages: 68-68, ISSN: 0004-637X

© 2016. The American Astronomical Society. All rights reserved.. We have developed a method for simulating the mesoscale compaction of early solar system solids in low-velocity impact events using the iSALE shock physics code. Chondrules are represented by non-porous disks, placed within a porous matrix. By simulating impacts into bimodal mixtures over a wide range of parameter space (including the chondrule-to-matrix ratio, the matrix porosity and composition, and the impact velocity), we have shown how each of these parameters influences the shock processing of heterogeneous materials. The temperature after shock processing shows a strong dichotomy: matrix temperatures are elevated much higher than the chondrules, which remain largely cold. Chondrules can protect some matrix from shock compaction, with shadow regions in the lee side of chondrules exhibiting higher porosity that elsewhere in the matrix. Using the results from this mesoscale modeling, we show how the ϵ - α porous-compaction model parameters depend on initial bulk porosity. We also show that the timescale for the temperature dichotomy to equilibrate is highly dependent on the porosity of the matrix after the shock, and will be on the order of seconds for matrix porosities of less than 0.1, and on the order of tens to hundreds of seconds for matrix porosities of ∼0.3-0.5. Finally, we have shown that the composition of the post-shock material is able to match the bulk porosity and chondrule-to-matrix ratios of meteorite groups such as carbonaceous chondrites and unequilibrated ordinary chondrites.

JOURNAL ARTICLE

Forman LV, Bland PA, Timms NE, Collins GS, Davison TM, Ciesla FJ, Benedix GK, Daly L, Trimby PW, Yang L, Ringer SP, Forman LV, Bland PA, Timms NE, Collins GS, Davison TM, Ciesla FJ, Benedix GK, Daly L, Trimby PW, Yang L, Ringer SP, Forman LV, Bland PA, Timms NE, Collins GS, Davison TM, Ciesla FJ, Benedix GK, Daly L, Trimby PW, Yang L, Ringer SP, Forman LV, Bland PA, Timms NE, Collins GS, Davison TM, Ciesla FJ, Benedix GK, Daly L, Trimby PW, Yang L, Ringer SPet al., 2016, Hidden secrets of deformation: Impact-induced compaction within a CV chondrite, EARTH AND PLANETARY SCIENCE LETTERS, Vol: 452, Pages: 133-145, ISSN: 0012-821X

© 2016 The Authors The CV3 Allende is one of the most extensively studied meteorites in worldwide collections. It is currently classified as S1—essentially unshocked—using the classification scheme of Stöffler et al. (1991), however recent modelling suggests the low porosity observed in Allende indicates the body should have undergone compaction-related deformation. In this study, we detail previously undetected evidence of impact through use of Electron Backscatter Diffraction mapping to identify deformation microstructures in chondrules, AOAs and matrix grains. Our results demonstrate that forsterite-rich chondrules commonly preserve crystal-plastic microstructures (particularly at their margins); that low-angle boundaries in deformed matrix grains of olivine have a preferred orientation; and that disparities in deformation occur between chondrules, surrounding and non-adjacent matrix grains. We find heterogeneous compaction effects present throughout the matrix, consistent with a highly porous initial material. Given the spatial distribution of these crystal-plastic deformation microstructures, we suggest that this is evidence that Allende has undergone impact-induced compaction from an initially heterogeneous and porous parent body. We suggest that current shock classifications (Stöffler et al., 1991) relying upon data from chondrule interiors do not constrain the complete shock history of a sample.

JOURNAL ARTICLE

Johnson BC, Blair DM, Collins GS, Melosh HJ, Freed AM, Taylor GJ, Head JW, Wieczorek MA, Andrews-Hanna JC, Nimmo F, Keane JT, Miljkovic K, Soderblom JM, Zuber MT, Johnson BC, Blair DM, Collins GS, Melosh HJ, Freed AM, Taylor GJ, Head JW, Wieczorek MA, Andrews-Hanna JC, Nimmo F, Keane JT, Miljković K, Soderblom JM, Zuber MT, Johnson BC, Blair DM, Collins GS, Melosh HJ, Freed AM, Taylor GJ, Head JW, Wieczorek MA, Andrews-Hanna JC, Nimmo F, Keane JT, Miljković K, Soderblom JM, Zuber MT, Johnson BC, Blair DM, Collins GS, Melosh HJ, Freed AM, Taylor GJ, Head JW, Wieczorek MA, Andrews-Hanna JC, Nimmo F, Keane JT, Miljković K, Soderblom JM, Zuber MT, Johnson BC, Blair DM, Collins GS, Melosh HJ, Freed AM, Taylor GJ, Head JW, Wieczorek MA, Andrews-Hanna JC, Nimmo F, Keane JT, Miljkovi K, Soderblom JM, Zuber MT, Johnson BC, Blair DM, Collins GSet al., 2016, Formation of the Orientale lunar multiring basin, SCIENCE, Vol: 354, Pages: 441-444, ISSN: 0036-8075

Multiring basins, large impact craters characterized by multiple concentric topographic rings, dominate the stratigraphy, tectonics, and crustal structure of the Moon. Using a hydrocode, we simulated the formation of the Orientale multiring basin, producing a subsurface structure consistent with high-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) spacecraft. The simulated impact produced a transient crater, ~390 kilometers in diameter, that was not maintained because of subsequent gravitational collapse. Our simulations indicate that the flow of warm weak material at depth was crucial to the formation of the basin's outer rings, which are large normal faults that formed at different times during the collapse stage. The key parameters controlling ring location and spacing are impactor diameter and lunar thermal gradients.

JOURNAL ARTICLE

Johnson BC, Collins GS, Minton DA, Bowling TJ, Simonson BM, Zuber MT, Johnson BC, Collins GS, Minton DA, Bowling TJ, Simonson BM, Zuber MT, Johnson BC, Collins GS, Minton DA, Bowling TJ, Simonson BM, Zuber MT, Johnson BC, Collins GS, Minton DA, Bowling TJ, Simonson BM, Zuber MTet al., 2016, Spherule layers, crater scaling laws, and the population of ancient terrestrial impactors, ICARUS, Vol: 271, Pages: 350-359, ISSN: 0019-1035

© 2016 Elsevier Inc.. Ancient layers of impact spherules provide a record of Earth's early bombardment history. Here, we compare different bombardment histories to the spherule layer record and show that 3.2-3.5. Ga the flux of large impactors (10-100. km in diameter) was likely 20-40 times higher than today. The E-belt model of early Solar System dynamics suggests that an increased impactor flux during the Archean is the result of the destabilization of an inward extension of the main asteroid belt (Bottke et al., 2012). Here, we find that the nominal flux predicted by the E-belt model is 7-19 times too low to explain the spherule layer record. Moreover, rather than making most lunar basins younger than 4.1. Gyr old, the nominal E-belt model, coupled with a corrected crater diameter scaling law, only produces two lunar basins larger than 300. km in diameter. We also show that the spherule layer record when coupled with the lunar cratering record and careful consideration of crater scaling laws can constrain the size distribution of ancient terrestrial impactors. The preferred population is main-belt-like up to ~50. km in diameter transitioning to a steep distribution going to larger sizes.

JOURNAL ARTICLE

Kring DA, Kramer GY, Collins GS, Potter RWK, Chandnani M, Kring DA, Kramer GY, Collins GS, Potter RWK, Chandnani M, Kring DA, Kramer GY, Collins GS, Potter RWK, Chandnani M, Kring DA, Kramer GY, Collins GS, Potter RWK, Chandnani M, Kring DA, Kramer GY, Collins GS, Potter RWK, Chandnani M, Kring DA, Kramer GY, Collins GS, Potter RWK, Chandnani Met al., 2016, Peak-ring structure and kinematics from a multi-disciplinary study of the Schrodinger impact basin, NATURE COMMUNICATIONS, Vol: 7, Pages: 13161-13161, ISSN: 2041-1723

The Schrödinger basin on the lunar farside is ∼320 km in diameter and the best-preserved peak-ring basin of its size in the Earth-Moon system. Here we present spectral and photogeologic analyses of data from the Moon Mineralogy Mapper instrument on the Chandrayaan-1 spacecraft and the Lunar Reconnaissance Orbiter Camera (LROC) on the LRO spacecraft, which indicates the peak ring is composed of anorthositic, noritic and troctolitic lithologies that were juxtaposed by several cross-cutting faults during peak-ring formation. Hydrocode simulations indicate the lithologies were uplifted from depths up to 30 km, representing the crust of the lunar farside. Through combining geological and remote-sensing observations with numerical modelling, we show that a Displaced Structural Uplift model is best for peak rings, including that in the K-T Chicxulub impact crater on Earth. These results may help guide sample selection in lunar sample return missions that are being studied for the multi-agency International Space Exploration Coordination Group.

JOURNAL ARTICLE

Miljkovic K, Collins GS, Wieczorek MA, Johnson BC, Soderblom JM, Neumann GA, Zuber MT, Miljković K, Collins GS, Wieczorek MA, Johnson BC, Soderblom JM, Neumann GA, Zuber MT, Miljković K, Collins GS, Wieczorek MA, Johnson BC, Soderblom JM, Neumann GA, Zuber MT, Miljkovic K, Collins GS, Miljkovic K, Collins GSet al., 2016, Subsurface morphology and scaling of lunar impact basins, JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, Vol: 121, Pages: 1695-1712, ISSN: 2169-9097

©2016. American Geophysical Union. All Rights Reserved. Impact bombardment during the first billion years after the formation of the Moon produced at least several tens of basins. The Gravity Recovery and Interior Laboratory (GRAIL) mission mapped the gravity field of these impact structures at significantly higher spatial resolution than previous missions, allowing for detailed subsurface and morphological analyses to be made across the entire globe. GRAIL-derived crustal thickness maps were used to define the regions of crustal thinning observed in centers of lunar impact basins, which represents a less unambiguous measure of a basin size than those based on topographic features. The formation of lunar impact basins was modeled numerically by using the iSALE-2D hydrocode, with a large range of impact and target conditions typical for the first billion years of lunar evolution. In the investigated range of impactor and target conditions, the target temperature had the dominant effect on the basin subsurface morphology. Model results were also used to update current impact scaling relationships applicable to the lunar setting (based on assumed target temperature). Our new temperature-dependent impact-scaling relationships provide estimates of impact conditions and transient crater diameters for the majority of impact basins mapped by GRAIL. As the formation of lunar impact basins is associated with the first ~700 Myr of the solar system evolution when the impact flux was considerably larger than the present day, our revised impact scaling relationships can aid further analyses and understanding of the extent of impact bombardment on the Moon and terrestrial planets in the early solar system.

JOURNAL ARTICLE

Monteux J, Collins GS, Tobie G, Choblet G, Monteux J, Collins GS, Tobie G, Choblet G, Monteux J, Collins GS, Tobie G, Choblet G, Monteux J, Collins GS, Tobie G, Choblet Get al., 2016, Consequences of large impacts on Enceladus' core shape, ICARUS, Vol: 264, Pages: 300-310, ISSN: 0019-1035

© 2015 Elsevier Inc. The intense activity on Enceladus suggests a differentiated interior consisting of a rocky core, an internal ocean and an icy mantle. However, topography and gravity data suggests large heterogeneity in the interior, possibly including significant core topography. In the present study, we investigated the consequences of collisions with large impactors on the core shape. We performed impact simulations using the code iSALE2D considering large differentiated impactors with radius ranging between 25 and 100. km and impact velocities ranging between 0.24 and 2.4. km/s. Our simulations showed that the main controlling parameters for the post-impact shape of Enceladus' rock core are the impactor radius and velocity and to a lesser extent the presence of an internal water ocean and the porosity and strength of the rock core. For low energy impacts, the impactors do not pass completely through the icy mantle. Subsequent sinking and spreading of the impactor rock core lead to a positive core topographic anomaly. For moderately energetic impacts, the impactors completely penetrate through the icy mantle, inducing a negative core topography surrounded by a positive anomaly of smaller amplitude. The depth and lateral extent of the excavated area is mostly determined by the impactor radius and velocity. For highly energetic impacts, the rocky core is strongly deformed, and the full body is likely to be disrupted. Explaining the long-wavelength irregular shape of Enceladus' core by impacts would imply multiple low velocity ( < 2.4. km/s) collisions with deca-kilometric differentiated impactors, which is possible only after the LHB period.

JOURNAL ARTICLE

Morgan JV, Gulick SPS, Bralower T, Chenot E, Christeson G, Claeys P, Cockell CS, Collins GS, Coolen MJL, Ferriere L, Gebhardt C, Goto K, Jones H, Kring DA, Le Ber E, Lofi J, Long X, Lowery C, Mellett C, Ocampo-Torres R, Osinski GR, Perez-Cruz L, Pickersgill A, Poelchau M, Rae A, Rasmussen C, Rebolledo-Vieyra M, Riller U, Sato H, Schmitt DR, Smit J, Tikoo S, Tomioka N, Urrutia-Fucugauchi J, Whalen M, Wittmann A, Yamaguchi KE, Zylberman W, Morgan JV, Gulick SPS, Bralower T, Chenot E, Christeson G, Claeys P, Cockell C, Collins GS, Coolen MJL, Ferrière L, Gebhardt C, Goto K, Jones H, Kring DA, Le Ber E, Lofi J, Long X, Lowery C, Mellett C, Ocampo-Torres R, Osinski GR, Perez-Cruz L, Pickersgill A, Poelchau M, Rae A, Rasmussen C, Rebolledo-Vieyra M, Riller U, Sato H, Schmitt DR, Smit J, Tikoo S, Tomioka N, Urrutia-Fucugauchi J, Whalen M, Wittmann A, Yamaguchi KE, Zylberman W, Morgan JV, Gulick SPS, Bralower T, Chenot E, Christeson G, Claeys P, Cockell C, Collins GS, Coolen MJL, Ferrière L, Gebhardt C, Goto K, Jones H, Kring DA, Le Ber E, Lofi J, Long X, Lowery C, Mellett C, Ocampo-Torres R, Osinski GR, Perez-Cruz L, Pickersgill A, Poelchau M, Rae A, Rasmussen C, Rebolledo-Vieyra M, Riller U, Sato H, Schmitt DR, Smit J, Tikoo S, Tomioka N, Urrutia-Fucugauchi J, Whalen M, Wittmann A, Yamaguchi KE, Zylberman W, Morgan JV, Gulick SPS, Bralower T, Chenot E, Christeson G, Claeys P, Cockell C, Collins GS, Coolen MJL, Ferrière L, Gebhardt C, Goto K, Jones H, Kring DA, Le Ber E, Lofi J, Long X, Lowery C, Mellett C, Ocampo-Torres R, Osinski GR, Perez-Cruz L, Pickersgill A, Poelchau M, Rae A, Rasmussen C, Rebolledo-Vieyra M, Riller U, Sato H, Schmitt DR, Smit J, Tikoo S, Tomioka N, Urrutia-Fucugauchi J, Whalen M, Wittmann A, Yamaguchi KE, Zylberman W, Morgan JV, Gulick SPS, Bralower T, Chenot E, Christeson G, Claeys P, Cockell C, Collins GS, Coolen MJL, Ferrière L, Gebhardt C, Goto K, Jones H, Kring DA, Le Ber E, Lofi J, Long X, Lowery C, Mellett C, Ocampo-Torres R, Osinski GR, Pereet al., 2016, The formation of peak rings in large impact craters, SCIENCE, Vol: 354, Pages: 878-882, ISSN: 0036-8075

Large impacts provide a mechanism for resurfacing planets through mixing near-surface rocks with deeper material. Central peaks are formed from the dynamic uplift of rocks during crater formation. As crater size increases, central peaks transition to peak rings. Without samples, debate surrounds the mechanics of peak-ring formation and their depth of origin. Chicxulub is the only known impact structure on Earth with an unequivocal peak ring, but it is buried and only accessible through drilling. Expedition 364 sampled the Chicxulub peak ring, which we found was formed from uplifted, fractured, shocked, felsic basement rocks. The peak-ring rocks are cross-cut by dikes and shear zones and have an unusually low density and seismic velocity. Large impacts therefore generate vertical fluxes and increase porosity in planetary crust.

JOURNAL ARTICLE

Smith RC, Hill J, Collins GS, Piggott MD, Kramer SC, Parkinson SD, Wilson C, Smith RC, Hill J, Collins GS, Piggott MD, Kramer SC, Parkinson SD, Wilson C, Smith RC, Hill J, Collins GS, Piggott MD, Kramer SC, Parkinson SD, Wilson C, Smith R, Hill J, Collins GS, Piggott MD, Kramer S, Parkinson S, Wilson Cet al., 2016, Comparing approaches for numerical modelling of tsunami generation by deformable submarine slides, OCEAN MODELLING, Vol: 100, Pages: 125-140, ISSN: 1463-5003

© 2016 The Authors. Tsunami generated by submarine slides are arguably an under-considered risk in comparison to earthquake-generated tsunami. Numerical simulations of submarine slide-generated waves can be used to identify the important factors in determining wave characteristics. Here we use Fluidity, an open source finite element code, to simulate waves generated by deformable submarine slides. Fluidity uses flexible unstructured meshes combined with adaptivity which alters the mesh topology and resolution based on the simulation state, focussing or reducing resolution, when and where it is required. Fluidity also allows a number of different numerical approaches to be taken to simulate submarine slide deformation, free-surface representation, and wave generation within the same numerical framework. In this work we use a multi-material approach, considering either two materials (slide and water with a free surface) or three materials (slide, water and air), as well as a sediment model (sediment, water and free surface) approach. In all cases the slide is treated as a viscous fluid. Our results are shown to be consistent with laboratory experiments using a deformable submarine slide, and demonstrate good agreement when compared with other numerical models. The three different approaches for simulating submarine slide dynamics and tsunami wave generation produce similar waveforms and slide deformation geometries. However, each has its own merits depending on the application. Mesh adaptivity is shown to be able to reduce the computational cost without compromising the accuracy of results.

JOURNAL ARTICLE

Asphaug E, Collins GS, Jutzi M, 2015, Global Scale Impacts, Asteroids IV, Editors: Michel, DeMeo, Bottke, Publisher: University of Arizona Press, Pages: 661-678, ISBN: 9780816532131

Global scale impacts modify the physical or thermal state of a substantial fraction of a target asteroid. Specific effects include accretion, family formation, reshaping, mixing and layering, shock and frictional heating, fragmentation, material compaction, dilatation, stripping of mantle and crust, and seismic degradation. Deciphering the complicated record of global scale impacts, in asteroids and meteorites, will lead us to understand the original planet-forming process and its resultant populations, and their evolution in time as collisions became faster and fewer. We provide a brief overview of these ideas, and an introduction to models.

BOOK CHAPTER

Forman LV, Bland PA, Timms NE, Daly L, Collins GS, Davison TM, Trimby PW, Ringer SPet al., 2015, RECOVERING THE PRIMORDIAL IMPACT HISTORY OF CHONDRITES IN UNPRECEDENTED DETAIL USING MASSIVE EBSD DATASETS, 78th Annual Meeting of the Meteoritical-Society, Publisher: WILEY-BLACKWELL, ISSN: 1086-9379

CONFERENCE PAPER

Jacobs CT, Goldin TJ, Collins GS, Piggott MD, Kramer SC, Melosh HJ, Wilson CRG, Allison PA, Jacobs CT, Goldin TJ, Collins GS, Piggott MD, Kramer SC, Melosh HJ, Wilson CRG, Allison PA, Jacobs CT, Goldin TJ, Collins GS, Piggott MD, Kramer SC, Melosh HJ, Wilson CRG, Allison PAet al., 2015, An improved quantitative measure of the tendency for volcanic ash plumes to form in water: implications for the deposition of marine ash beds, JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH, Vol: 290, Pages: 114-124, ISSN: 0377-0273

© 2014. Laboratory experiments and numerical simulations have shown that volcanic ash particles immersed in water can either settle slowly and individually, or rapidly and collectively as particle-laden plumes. The ratio of timescales for individual and collective settling, in the form of analytical expressions, provides a dimensionless quantitative measure of the tendency for such plumes to grow and persist which has important implications for determining particle residence times and deposition rates. However, existing measures in the literature assume that collective settling obeys Stokes' law and is therefore controlled by the balance between gravitational forces and viscous drag, despite plume development actually being controlled by the balance between gravitational forces and inertial drag even in the absence of turbulence during early times. This paper presents a new measure for plume onset which takes into account the inertial drag-controlled (rather than viscous drag-controlled) nature of plume growth and descent. A parameter study comprising a set of numerical simulations of small-scale volcanic ash particle settling experiments highlights the effectiveness of the new measure and, by comparison with an existing measure in the literature, also demonstrates that the timescale of collective settling is grossly under-estimated when assuming that plume development is slowed by viscous drag. Furthermore, the formulation of the new measure means that the tendency for plumes to form can be estimated from the thickness and concentration of the final deposit; the magnitude and duration of particle flux across the water's surface do not need to be known. The measure therefore permits the residence times of particles in a large body of water to be more accurately and practically determined, and allows the improved interpretation of layers of volcaniclastic material deposited at the seabed.

JOURNAL ARTICLE

Milbury C, Johnson BC, Melosh HJ, Collins GS, Blair DM, Soderblom JM, Nimmo F, Bierson CJ, Phillips RJ, Zuber MT, Milbury C, Johnson BC, Melosh HJ, Collins GS, Blair DM, Soderblom JM, Nimmo F, Bierson CJ, Phillips RJ, Zuber MT, Milbury C, Johnson BC, Melosh HJ, Collins GS, Blair DM, Soderblom JM, Nimmo F, Bierson CJ, Phillips RJ, Zuber MT, Milbury C, Johnson BC, Melosh HJ, Collins GS, Blair DM, Soderblom JM, Nimmo F, Bierson CJ, Phillips RJ, Zuber MT, Milbury C, Johnson BC, Melosh HJ, Collins GS, Blair DM, Soderblom JM, Nimmo F, Bierson CJ, Phillips RJ, Zuber MTet al., 2015, Preimpact porosity controls the gravity signature of lunar craters, GEOPHYSICAL RESEARCH LETTERS, Vol: 42, Pages: 9711-9716, ISSN: 0094-8276

© 2015. American Geophysical Union. All Rights Reserved. We model the formation of lunar complex craters and investigate the effect of preimpact porosity on their gravity signatures. We find that while preimpact target porosities less than ~7% produce negative residual Bouguer anomalies (BAs), porosities greater than ~7% produce positive anomalies whose magnitude is greater for impacted surfaces with higher initial porosity. Negative anomalies result from pore space creation due to fracturing and dilatant bulking, and positive anomalies result from destruction of pore space due to shock wave compression. The central BA of craters larger than ~215 km in diameter, however, are invariably positive because of an underlying central mantle uplift. We conclude that the striking differences between the gravity signatures of craters on the Earth and Moon are the result of the higher average porosity and variable porosity of the lunar crust. Key Points The posi tive gravity signature of craters is due to initial porosity compaction Porosity is responsible for the observed scatter in the Bouguer anomalies Mantle uplift dominates the gravity for craters larger than ~215 km in diameter.

JOURNAL ARTICLE

Miljkovic K, Wieczorek MA, Collins GS, Solomon SC, Smith DE, Zuber MT, Miljković K, Wieczorek MA, Collins GS, Solomon SC, Smith DE, Zuber MT, Miljković K, Wieczorek MA, Collins GS, Solomon SC, Smith DE, Zuber MTet al., 2015, Excavation of the lunar mantle by basin-forming impact events on the Moon, EARTH AND PLANETARY SCIENCE LETTERS, Vol: 409, Pages: 243-251, ISSN: 0012-821X

© 2014 Elsevier B.V. Global maps of crustal thickness on the Moon, derived from gravity measurements obtained by NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission, have shown that the lunar crust is thinner than previously thought. Hyperspectral data obtained by the Kaguya mission have also documented areas rich in olivine that have been interpreted as material excavated from the mantle by some of the largest lunar impact events. Numerical simulations were performed with the iSALE-2D hydrocode to investigate the conditions under which mantle material may have been excavated during large impact events and where such material should be found. The results show that excavation of the mantle could have occurred during formation of the several largest impact basins on the nearside hemisphere as well as the Moscoviense basin on the farside hemisphere. Even though large areas in the central portions of these basins were later covered by mare basaltic lava flows, surficial lunar mantle deposits are predicted in areas external to these maria. Our results support the interpretation that the high olivine abundances detected by Kaguya spacecraft could indeed be derived from the lunar mantle.

JOURNAL ARTICLE

Muxworthy AR, Bland PA, Collins G, Moore Jet al., 2015, MAGNETIC FABRICS IN ALLENDE: IMPLICATIONS FOR MAGNETIC REMANENCE ACQUISITION., 78th Annual Meeting of the Meteoritical-Society, Publisher: WILEY-BLACKWELL, ISSN: 1086-9379

CONFERENCE PAPER

Ormö J, Melero-Asensio I, Housen KR, Wünnemann K, Elbeshausen D, Collins GS, Ormö J, Melero-Asensio I, Housen KR, Wünnemann K, Elbeshausen D, Collins GS, Ormo J, Melero-Asensio I, Housen K, Wunnemann K, Elbeshausen D, Collins GSet al., 2015, Scaling and reproducibility of craters produced at the Experimental Projectile Impact Chamber (EPIC), Centro de Astrobiología, Spain, Meteoritics and Planetary Science, Vol: 50, Pages: 2067-2086, ISSN: 1086-9379

© 2015 The Meteoritical Society. The Experimental Projectile Impact Chamber (EPIC) is a specially designed facility for the study of processes related to wet-target (e.g., "marine") impacts. It consists of a 7 m wide, funnel-shaped test bed, and a 20.5 mm caliber compressed N 2 gas gun. The target can be unconsolidated or liquid. The gas gun can launch 20 mm projectiles of various solid materials under ambient atmospheric pressure and at various angles from the horizontal. To test the functionality and quality of obtained results by EPIC, impacts were performed into dry beach sand targets with two different projectile materials; ceramic Al 2 O 3 (max. velocity 290 m s -1 ) and Delrin (max. velocity 410 m s -1 ); 23 shots used a quarter-space setting (19 normal, 4 at 53° from horizontal) and 14 were in a half-space setting (13 normal, 1 at 53°). The experiments were compared with numerical simulations using the iSALE code. Differences were seen between the nondisruptive Al 2 O 3 (ceramic) and the disruptive Delrin (polymer) projectiles in transient crater development. All final crater dimensions, when plotted in scaled form, agree reasonably well with the results of other studies of impacts into granular materi als. We also successfully validated numerical models of vertical and oblique impacts in sand against the experimental results, as well as demonstrated that the EPIC quarter-space experiments are a reasonable approximation for half-space experiments. Altogether, the combined evaluation of experiments and numerical simulations support the usefulness of the EPIC in impact cratering studies.

JOURNAL ARTICLE

Potter RWK, Kring DA, Collins GS, Potter RWK, Kring DA, Collins GSet al., 2015, Scaling of basin-sized impacts and the influence of target temperature, Special Paper of the Geological Society of America, Vol: 518, Pages: 99-113, ISSN: 0072-1077

© 2015 The Geological Society of America. All rights reserved. We produce a set of scaling laws for basin-sized impacts using data from a suite of lunar basin numerical models. The results demonstrate the importance of preimpact target temperature and thermal gradient, which are shown to greatly influence the modification phase of the impact cratering process. Impacts into targets with contrasting thermal properties also produce very different crustal and topographic profiles for impacts of the same energy. Thermal conditions do not, however, significantly influence the excavation stage of the cratering process; results demonstrate, as a consequence of gravity-dominated growth, that transient crater radii are generally within 5% of each other over a wide range of thermal gradients. Excavation depth-to-diameter ratios for the basin models (~0.12) agree well with experimental, geological, and geophysical estimates, suggesting basins follow proportional scaling. This is further demonstrated by an agreement between the basin models and Piscaling laws based upon first principles and experimental data. The results of this work should also be applicable to basin-scale impacts on other silicate bodies, including the Hadean Earth.

JOURNAL ARTICLE

Bland PA, Collins GS, Davison TM, Abreu NM, Ciesla FJ, Muxworthy AR, Moore J, Bland PA, Collins GS, Davison TM, Abreu NM, Ciesla FJ, Muxworthy AR, Moore J, Bland PA, Collins GS, Davison TM, Abreu NM, Ciesla FJ, Muxworthy AR, Moore J, Bland PA, Collins GS, Davison TM, Abreu NM, Ciesla FJ, Muxworthy AR, Moore J, Bland PA, Collins GS, Davison TM, Abreu NM, Ciesla FJ, Muxworthy AR, Moore Jet al., 2014, Pressure-temperature evolution of primordial solar system solids during impact-induced compaction, NATURE COMMUNICATIONS, Vol: 5, Pages: 5451-5451, ISSN: 2041-1723

Prior to becoming chondritic meteorites, primordial solids were a poorly consolidated mix of mm-scale igneous inclusions (chondrules) and high-porosity sub-μm dust (matrix). We used high-resolution numerical simulations to track the effect of impact-induced compaction on these materials. Here we show that impact velocities as low as 1.5 km s(-1) were capable of heating the matrix to >1,000 K, with pressure-temperature varying by >10 GPa and >1,000 K over ~100 μm. Chondrules were unaffected, acting as heat-sinks: matrix temperature excursions were brief. As impact-induced compaction was a primary and ubiquitous process, our new understanding of its effects requires that key aspects of the chondrite record be re-evaluated: palaeomagnetism, petrography and variability in shock level across meteorite groups. Our data suggest a lithification mechanism for meteorites, and provide a 'speed limit' constraint on major compressive impacts that is inconsistent with recent models of solar system orbital architecture that require an early, rapid phase of main-belt collisional evolution.

JOURNAL ARTICLE

Bray VJ, Collins GS, Morgan JV, Melosh HJ, Schenk PM, Bray VJ, Collins GS, Morgan JV, Melosh HJ, Schenk PM, Bray VJ, Collins GS, Morgan JV, Melosh HJ, Schenk PMet al., 2014, Hydrocode simulation of Ganymede and Europa cratering trends - How thick is Europa's crust?, ICARUS, Vol: 231, Pages: 394-406, ISSN: 0019-1035

One of the continuing debates of outer Solar System research centers on the thickness of Europa's ice crust, as it affects both the habitability and accessibility of its sub-surface ocean. Here we use hydrocode modeling of the impact process in layered ice and water targets and comparison to Europan cratering trends and Galileo-derived topographic profiles to investigate the crustal thickness. Full or partial penetration of the ice crust by an impactor occurred in simulations in which the ice thickness was less than 14 times the projectile radius. Craters produced in these thin-shell simulations were consistently smaller than for larger ice thicknesses, which will complicate inference of large impactor population sizes. Simulations in which the resultant crater was 3 times the ice layer thickness resulted in summit-pit morphology. This work supports that summit pit craters noted on both rocky and icy bodies, can be created by the presence of a weaker layer at depth. We suggest that floor pits, seen only on ice-rich bodies, require a different formation mechanism to summit pits.Pristine craters formed in a target with high heat flow were shallower than for the same impact into a target of lesser heat flow, suggesting that the 'starting' crater morphology for viscous relaxation, isostatic readjustments and erosion rate studies is different for craters formed in times of different heat flow. We find that the crater depth-diameter trend of Europa can only be recreated when simulating impact into an upper brittle ice layer of 7. km depth, with a corresponding geothermal gradient of 0.025. K/m. As this ice thickness estimate is below ~10. km, results from this work suggest that convective overturn of the surface ice may occur, or have occurred, on Europa making the development of indigenous life a possibility. © 2013 Elsevier Inc.

JOURNAL ARTICLE

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00424523&limit=30&person=true