Imperial College London

Professor Gareth Collins

Faculty of EngineeringDepartment of Earth Science & Engineering

Professor of Planetary Science
 
 
 
//

Contact

 

+44 (0)20 7594 1518g.collins Website

 
 
//

Location

 

4.83Royal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

207 results found

Daubar IJ, Lognonné P, Teanby NA, Collins GS, Clinton J, Stähler S, Spiga A, Karakostas F, Ceylan S, Malin M, McEwen AS, Maguire R, Charalambous C, Onodera K, Lucas A, Rolland L, Vaubaillon J, Kawamura T, Böse M, Horleston A, Driel M, Stevanović J, Miljković K, Fernando B, Huang Q, Giardini D, Larmat CS, Leng K, Rajšić A, Schmerr N, Wójcicka N, Pike T, Wookey J, Rodriguez S, Garcia R, Banks ME, Margerin L, Posiolova L, Banerdt Bet al., 2020, A new crater near inSight: implications for seismic impact detectability on Mars, Journal of Geophysical Research: Planets, Vol: 125, ISSN: 2169-9097

A new 1.5 meter diameter impact crater was discovered on Mars only ~40 km from the InSight lander. Context camera images constrained its formation between February 21 and April 6, 2019; follow‐up HiRISE images resolved the crater. During this time period, three seismic events were identified in InSight data. We derive expected seismic signal characteristics and use them to evaluate each of the seismic events. However, none of them can definitively be associated with this source. Atmospheric perturbations are generally expected to be generated during impacts; however, in this case, no signal could be identified as related to the known impact. Using scaling relationships based on the terrestrial and lunar analogs and numerical modeling, we predict the amplitude, peak frequency, and duration of the seismic signal that would have emanated from this impact. The predicted amplitude falls near the lowest levels of the measured seismometer noise for the predicted frequency. Hence it is not surprising this impact event was not positively identified in the seismic data. Finding this crater was a lucky event as its formation this close to InSight has a probability of only ~0.2, and the odds of capturing it in before and after images is extremely low. We revisit impact‐seismic discriminators in light of real experience with a seismometer on the martian surface. Using measured noise of the instrument, we revise our previous prediction of seismic impact detections downwards, from ~a few to tens, to just ~2 per Earth year, still with an order of magnitude uncertainty.

Journal article

Timms NE, Kirkland CL, Cavosie AJ, Rae ASP, Rickard WDA, Evans NJ, Erickson TM, Wittmann A, Ferrière L, Collins GS, Gulick SPSet al., 2020, Shocked titanite records Chicxulub hydrothermal alteration and impact age, Geochimica et Cosmochimica Acta, Vol: 281, Pages: 12-30, ISSN: 0016-7037

Hydrothermal activity is a common phenomenon in the wake of impact events, yet identifying and dating impact hydrothermal systems can be challenging. This study provides the first detailed assessment of the effects of shock microstructures and impact-related alteration on the U-Pb systematics and trace elements of titanite (CaTiSiO5), focusing on shocked granite target rocks from the peak ring of the Chicxulub impact structure, Mexico. A >1 mm long, shock-twinned titanite grain preserves a dense network of irregular microcracks, some of which exploit shock twin interfaces. Secondary microcrystalline anatase and pyrite are heterogeneously distributed along some microcracks. In situ laser ablation multi-collector inductively-coupled plasma mass spectrometry (LA-MC-ICPMS) analysis reveals a mixture of three end-member Pb components. The Pb components are: 1) common Pb, consistent with the Pb isotopic signature of adjacent alkali feldspar; 2) radiogenic Pb accumulated since magmatic crystallization; and 3) a secondary, younger Pb signature due to impact-related complete radiogenic Pb loss. The youngest derived ages define a regression from common Pb that intersects Concordia at 67 ± 4 Ma, in agreement with the established age of 66.04 ± 0.05 Ma for the Chicxulub impact event. Contour maps of LA-MC-ICPMS data reveal that the young ages are spatially restricted to microstructurally-complex domains that correlate with significant depletion in trace elements (REE-Y-Zr-Nb-Mo-Sn-Th) and reduction in magnitude of the Eu/Eu* anomaly. Mapping by time-of-flight secondary ion mass spectrometry (ToF-SIMS) show that patterns of localised element depletion in titanite are spatially related to microcracks, which are enriched in Al. The spatial correlation of ages and trace element abundance is consistent with localised removal of Pb and other trace elements from a pervasive network of fast fluid pathways in fractured domains via a fluid-mediated element transport proc

Journal article

Collins G, Patel N, Davison T, Rae A, Morgan J, Gulick S, IODPICDP Expedition 364 & Third-Party Scientistset al., 2020, A steeply-inclined trajectory for the Chicxulub impact, Nature Communications, Vol: 11, Pages: 1-10, ISSN: 2041-1723

The environmental severity of large impacts on Earth is influenced by their impact trajectory. Impact direction and angle to the target plane affect the volume and depth of origin of vaporized target, as well as the trajectories of ejected material. The asteroid impact that formed the 66 Ma Chicxulub crater had a profound and catastrophic effect on Earth’s environment,but the impact trajectory is debated. Here we show that impact angle and direction can be diagnosed by asymmetries in the subsurface structure of the Chicxulub crater. Comparison of 3D numerical simulations of Chicxulub-scale impacts with geophysical observations suggests that the Chicxulub crater was formed by a steeply-inclined (45 -60° to horizontal) impact from the northeast; several lines of evidence rule out a low angle (< 30°) impact. Asteeply-inclined impact produces a nearly symmetric distribution of ejected rock and releases more climate-changing gases per impactor mass than either a very shallow or near-vertical impact.

Journal article

Stickle AM, Bruck Syal M, Cheng AF, Collins GS, Davison TM, Gisler G, Güldemeister N, Heberling T, Luther R, Michel P, Miller P, Owen JM, Rainey ESG, Rivkin AS, Rosch T, Wünnemann Ket al., 2020, Benchmarking impact hydrocodes in the strength regime: Implications for modeling deflection by a kinetic impactor, Icarus, Vol: 338, Pages: 1-24, ISSN: 0019-1035

The Double Asteroid Redirection Test (DART) is a NASA-sponsored mission that will be the first direct test of the kinetic impactor technique for planetary defense. The DART spacecraft will impact into Didymos-B, the moon of the binary system 65803 Didymos, and the resulting period change will be measured from Earth. Impact simulations will be used to predict the crater size and momentum enhancement expected from the DART impact. Because the specific material properties (strength, porosity, internal structure) of the Didymos-B target are unknown, a wide variety of numerical simulations must be performed to better understand possible impact outcomes. This simulation campaign will involve a large parameter space being simulated using multiple different shock physics hydrocodes. In order to understand better the behaviors and properties of numerical simulation codes applicable to the DART impact, a benchmarking and validation program using different numerical codes to solve a set of standard problems was designed and implemented. The problems were designed to test the effects of material strength, porosity, damage models, and target geometry on the ejecta following an impact and thus the momentum transfer efficiency. Several important results were identified from comparing simulations across codes, including the effects of model resolution and porosity and strength model choice: 1) momentum transfer predictions almost uniformly exhibit a larger variation than predictions of crater size; 2) the choice of strength model, and the values used for material strength, are significantly more important in the prediction of crater size and momentum enhancement than variation between codes; 3) predictions for crater size and momentum enhancement tend to be similar (within 15‐20%) when similar strength models are used in different codes. These results will be used to better design a modeling plan for the DART mission as well as to better understand the potential results that may be

Journal article

Banerdt WB, Smrekar SE, Banfield D, Giardini D, Golombek M, Johnson CL, Lognonne P, Spiga A, Spohn T, Perrin C, Stahler SC, Collins G, Pike WTet al., 2020, Initial results from the InSight mission on Mars, Nature Geoscience, Vol: 13, Pages: 183-189, ISSN: 1752-0894

NASA’s InSight (Interior exploration using Seismic Investigations, Geodesy and Heat Transport) mission landed in Elysium Planitia on Mars on 26 November 2018. It aims to determine the interior structure, composition and thermal state of Mars, as well as constrain present-day seismicity and impact cratering rates. Such information is key to understanding the differentiation and subsequent thermal evolution of Mars, and thus the forces that shape the planet’s surface geology and volatile processes. Here we report an overview of the first ten months of geophysical observations by InSight. As of 30 September 2019, 174 seismic events have been recorded by the lander’s seismometer, including over 20 events of moment magnitude Mw = 3–4. The detections thus far are consistent with tectonic origins, with no impact-induced seismicity yet observed, and indicate a seismically active planet. An assessment of these detections suggests that the frequency of global seismic events below approximately Mw = 3 is similar to that of terrestrial intraplate seismic activity, but there are fewer larger quakes; no quakes exceeding Mw = 4 have been observed. The lander’s other instruments—two cameras, atmospheric pressure, temperature and wind sensors, a magnetometer and a radiometer—have yielded much more than the intended supporting data for seismometer noise characterization: magnetic field measurements indicate a local magnetic field that is ten-times stronger than orbital estimates and meteorological measurements reveal a more dynamic atmosphere than expected, hosting baroclinic and gravity waves and convective vortices. With the mission due to last for an entire Martian year or longer, these results will be built on by further measurements by the InSight lander.

Journal article

Snelling B, Neethling S, Horsburgh K, Collins G, Piggott Met al., 2020, Uncertainty quantification of landslide generated waves using Gaussian process emulation and variance-based sensitivity analysis, Water, Vol: 12, ISSN: 2073-4441

Simulations of landslide generated waves (LGWs) are prone to high levels of uncertainty. Here we present a probabilistic sensitivity analysis of an LGW model. The LGW model was realised through a smooth particle hydrodynamics (SPH) simulator, which is capable of modelling fluids with complex rheologies and includes flexible boundary conditions. This LGW model has parameters defining the landslide, including its rheology, that contribute to uncertainty in the simulated wave characteristics. Given the computational expense of this simulator, we made use of the extensive uncertainty quantification functionality of the Dakota toolkit to train a Gaussian process emulator (GPE) using a dataset derived from SPH simulations. Using the emulator we conducted a variance-based decomposition to quantify how much each input parameter to the SPH simulation contributed to the uncertainty in the simulated wave characteristics. Our results indicate that the landslide’s volume and initial submergence depth contribute the most to uncertainty in the wave characteristics, while the landslide rheological parameters have a much smaller influence. When estimated run-up is used as the indicator for LGW hazard, the slope angle of the shore being inundated is shown to be an additional influential parameter. This study facilitates probabilistic hazard analysis of LGWs, because it reveals which source characteristics contribute most to uncertainty in terms of how hazardous a wave will be, thereby allowing computational resources to be focused on better understanding that uncertainty.

Journal article

Snelling BE, Collins GS, Piggott MD, Neethling SJet al., 2020, Improvements to a smooth particle hydrodynamics simulator for investigating submarine landslide generated waves, International Journal for Numerical Methods in Fluids, Vol: 92, Pages: 744-764, ISSN: 0271-2091

Submarine landslides can exhibit complex rheologies, including a finite yield stress and shear thinning, yet are often simulated numerically using a Newtonian fluid rheology and simplistic boundary conditions. Here we present improvements made to a Smoothed Particle Hydrodynamics simulator to allow the accurate simulation of submarine landslide generated waves. The improvements include the addition of Bingham and Herschel‐Bulkley rheologies, which better simulate the behavior of submarine mudflows. The interaction between the base of the slide and the slope is represented more accurately through the use of a viscous stress boundary condition. This condition treats the interface between the seafloor and the slide as a fluid boundary layer with a user‐defined viscosity and length scale. Modifications to the pressure and density calculations are described that improve their stability for landslide generated wave scenarios. An option for pressure decomposition is introduced to prevent particle locking under high pressure. This facilitates the application of this simulator to landslide scenarios beneath significant water depths. Additional modifications to the reaveraging and renormalization routines improve the stability of the free surface and fluid density. We present the mathematical formulations of these improvements alongside commentary on their performance and applicability to landslide generated wave modeling. The modifications are verified against analytical fluid flow solutions and a wave generation experiment.

Journal article

Raducan SD, Davison TM, Collins GS, 2020, The effects of asteroid layering on ejecta mass-velocity distribution and implications for impact momentum transfer, Planetary and Space Science, Vol: 180, ISSN: 0032-0633

Most bodies in the Solar System do not have a homogeneous structure. Understanding the outcome of an impact into regolith layers of different properties is especially important for NASA’s Double Asteroid Redirection Test (DART) and ESA’s Hera missions. Here we used the iSALE shock physics code to simulate the DART impact into three different target scenarios in the strength regime: a homogeneous porous half-space; layered targets with a porous weak layer overlying a stronger bedrock; and targets with exponentially decreasing porosity with depth. For each scenario we determined the sensitivity of crater morphology, ejecta mass-velocity distribution and momentum transferred from the impact for deflection, , to target properties and structure. We found that for a homogeneous porous half-space, cohesion and porosity play a significant role and the DART impact is expected to produce a between 1 and 3. In a two-layer target scenario, the presence of a less porous, stronger lower layer close to the surface can cause both amplification and reduction of ejected mass and momentum relative to the homogeneous upper-layer case. For the case of DART, the momentum enhancement can change by up to 90%. Impacts into targets with an exponentially decreasing porosity with depth only produced an enhancement in the ejected mass and momentum for sharp decreases in porosity that occur within 6 m of the asteroid surface. Together with measurements of the DART crater by the Hera mission, these results can be used to test the predictive capabilities of numerical models of asteroid deflection.

Journal article

Thompson SL, Lauson HS, Melosh HJ, Collins G, Stewart STet al., 2019, M-ANEOS

A FORTRAN77 program for the construction of thermodynamic equations of state, which extends the ANEOS computer code developed at Sandia National Laboratories

Software

Gulick SPS, Bralower T, Ormö J, Hall B, Grice K, Schaefer B, Lyons S, Freeman KH, Morgan J, Artemieva N, Kaskes P, de Graaff SJ, Whalen M, Collins G, Tikoo SM, Verhagen C, Christeson GL, Claeys P, Coolen M, Goderis S, Goto K, Grieve R, McCall N, Osinski G, Rae A, Riller U, Smit J, Vajda V, Wittmann A, and the Expedition 364 Scientistset al., 2019, The first day of the Cenozoic, Proceedings of the National Academy of Sciences of the United States of America, Vol: 116, Pages: 19342-19351, ISSN: 0027-8424

Highly expanded Cretaceous–Paleogene (K-Pg) boundary section from the Chicxulub peak ring, recovered by International Ocean Discovery Program (IODP)–International Continental Scientific Drilling Program (ICDP) Expedition 364, provides an unprecedented window into the immediate aftermath of the impact. Site M0077 includes ∼130 m of impact melt rock and suevite deposited the first day of the Cenozoic covered by <1 m of micrite-rich carbonate deposited over subsequent weeks to years. We present an interpreted series of events based on analyses of these drill cores. Within minutes of the impact, centrally uplifted basement rock collapsed outward to form a peak ring capped in melt rock. Within tens of minutes, the peak ring was covered in ∼40 m of brecciated impact melt rock and coarse-grained suevite, including clasts possibly generated by melt–water interactions during ocean resurge. Within an hour, resurge crested the peak ring, depositing a 10-m-thick layer of suevite with increased particle roundness and sorting. Within hours, the full resurge deposit formed through settling and seiches, resulting in an 80-m-thick fining-upward, sorted suevite in the flooded crater. Within a day, the reflected rim-wave tsunami reached the crater, depositing a cross-bedded sand-to-fine gravel layer enriched in polycyclic aromatic hydrocarbons overlain by charcoal fragments. Generation of a deep crater open to the ocean allowed rapid flooding and sediment accumulation rates among the highest known in the geologic record. The high-resolution section provides insight into the impact environmental effects, including charcoal as evidence for impact-induced wildfires and a paucity of sulfur-rich evaporites from the target supporting rapid global cooling and darkness as extinction mechanisms.

Journal article

Raducan SD, Davison TM, Luther R, Collins GSet al., 2019, The role of asteroid strength, porosity and internal friction in impact momentum transfer, Icarus, Vol: 329, Pages: 282-295, ISSN: 0019-1035

Earth is continually impacted by very small asteroids and debris, and a larger object, though uncommon, could produce a severe natural hazard. During impact crater formation the ballistic ejection of material out of the crater is a major process, which holds significance for an impact study into the deflection of asteroids. In this study we numerically simulate impacts into low-gravity, strength dominated asteroid surfaces using the iSALE shock physics code, and consider the Double Asteroid Redirection Test (DART) mission as a case study. We find that target cohesion, initial porosity, and internal friction coefficient greatly influence ejecta mass/velocity/launch-position distributions and hence the amount by which an asteroid can be deflected. Our results show that as the cohesion is decreased the ratio of ejected momentum to impactor momentum, β − 1, increases; β − 1 also increases as the initial porosity and internal friction coefficient of the asteroid surface decrease. Using nominal impactor parameters and reasonable estimates for the material properties of the Didymos binary asteroid, the DART target, our simulations show that the ejecta produced from the impact can enhance the deflection by a factor of 2 to 4. We use numerical impact simulations that replicate conditions in several laboratory experiments to demonstrate that our approach to quantify ejecta properties is consistent with impact experiments in analogous materials. Finally, we investigate the self-consistency between the crater size and ejection speed scaling relationships previously derived from the point-source approximation for impacts into the same target material.

Journal article

McMullan S, Daly L, Collins GS, Bland Pet al., 2019, THE UK FIREBALL NETWORK: STAGE TWO OF THE GLOBAL FIREBALL OBSERVATORY., 82nd Annual Meeting of the Meteoritical-Society (MetSoc), Publisher: WILEY, ISSN: 1086-9379

Conference paper

McMullan S, Collins GS, Davison TM, 2019, ASTEROID TO AIRBURST; COMPARING SEMI-ANALYTICAL AIRBURST MODELS TO HYDROCODES, 82nd Annual Meeting of the Meteoritical-Society (MetSoc), Publisher: WILEY, ISSN: 1086-9379

Conference paper

Rae ASP, Collins G, Morgan J, Salge T, Christeson GL, Leung J, Lofi J, Gulick SPS, Poelchau M, Riller U, Gebhardt C, Grieve RA, Osinski GRet al., 2019, Impact-induced porosity and micro-fracturing at the Chicxulub impact structure, Journal of Geophysical Research: Planets, Vol: 124, Pages: 1960-1978, ISSN: 2169-9097

Porosity and its distribution in impact craters has an important effect on the petrophysical properties of impactites: seismic wave-speeds and reflectivity, rock permeability, strength, and density. These properties are important for the identification of potential craters and the understanding of the process and consequences of cratering. The Chicxulub impact structure, recently drilled by the joint International Ocean Discovery Program and International Continental scientific Drilling Program Expedition 364, provides a unique opportunity to compare direct observations of impactites with geophysical observations and models. Here, we combine small scale petrographic and petrophysical measurements with larger scale geophysical measurements and numerical simulations of the Chicxulub impact structure. Our aim is to assess the cause of unusually high porosities within the Chicxulub peak ring and the capability of numerical impact simulations to predict the gravity signature and the distribution and texture of porosity within craters. We show that high porosities within the Chicxulub peak ring are primarily caused by shock-induced micro-fracturing. These fractures have preferred orientations, which can be predicted by considering the orientations of principal stresses during shock, and subsequent deformation during peak-ring formation. Our results demonstrate that numerical impact simulations, implementing the Dynamic Collapse Model of peak-ring formation, can accurately predict the distribution and orientation of impact-induced micro-fractures in large craters which plays an important role in the geophysical signature of impact structures.

Journal article

McMullan S, Collins GS, 2019, Uncertainty quantification in continuous fragmentation airburst models, Icarus, Vol: 327, Pages: 19-35, ISSN: 0019-1035

As evidenced by the Chelyabinsk and Tunguska airburst events in Russia, decameter-scale Near-Earth Objects (NEOs) can pose a hazard to human life and infrastructure from the energy they deposit in the atmosphere as they break up. To understand the potential damage these small NEOs can cause on Earth's surface, it is imperative to be able to model their atmospheric entry quickly and accurately. Here we compare three semi-analytical models of asteroid airbursts that differ in their descriptions of fragment separation and spreading. Each model can be calibrated to produce a good fit to the energy deposition curve inferred from Chelyabinsk observations, but in each case the implied initial meteoroid strength is different and when the calibrated models are upscaled to Tunguska, the results diverge. This introduces an inter-model uncertainty that compounds the large range of uncertain physical and model parameters that influence probabilistic hazard assessment. Uncertainty quantification of airburst energy deposition was performed for a theoretical impacting object with H-magnitude 27, assuming no prior knowledge of any other impactor or model parameter. Each of the three models produces a different distribution of airburst outcomes, however, the variation attributable to physical parameter uncertainty is far larger than the inter-model differences. To constrain the initial conditions of the Tunguska event, the same uncertainty quantification was performed for an H-magnitude 24 event. Among the scenarios consistent with Tunguska observations (5–10 km burst altitude, 10–60° trajectory angle, 3–50 MT TNT total energy release) the most likely range of impact conditions was: radius of 25–75 m, mass of 1× 10 8 – 2.5× 10 9 kg, initial velocity of 11.5–33 km/s, and angle of 25–60°.

Journal article

Lyons RJ, Bowling TJ, Ciesla FJ, Davison T, Collins Get al., 2019, The effects of impacts on the cooling rates of iron meteorites, Meteoritics and Planetary Science, Vol: 54, Pages: 1604-1618, ISSN: 1086-9379

Iron meteorites provide a record of the thermal evolution of their parent bodies, with cooling rates inferred from the structures observed in the Widmanstätten pattern. Traditional planetesimal thermal models suggest that meteorite samples derived from the same iron core would have identical cooling rates, possibly providing constraints on the sizes and structures of their parent bodies. However, some meteorite groups exhibit a range of cooling rates or point to uncomfortably small parent bodies whose survival is difficult to reconcile with dynamical models. Together, these suggest that some meteorites are indicating a more complicated origin. To date, thermal models have largely ignored the effects that impacts would have on the thermal evolution of the iron meteorite parent bodies. Here we report numerical simulations investigating the effects that impacts at different times have on cooling rates of cores of differentiated planetesimals. We find that impacts that occur when the core is near or above its solidus, but the mantle has largely crystallized can expose iron near the surface of the body, leading to rapid and nonuniform cooling. The time period when a planetesimal can be affected in this way can range between 20 and 70 Myr after formation for a typical 100 km radius planetesimal. Collisions during this time would have been common, and thus played an important role in shaping the properties of iron meteorites.

Journal article

Derrick JG, Rutherford ME, Chapman DJ, Davison TM, Duarte JPP, Farbaniec L, Bland PA, Eakins DE, Collins GSet al., 2019, Investigating shock processes in bimodal powder compaction through modelling and experiment at the mesoscale, International Journal of Solids and Structures, Vol: 163, Pages: 211-219, ISSN: 0020-7683

Impact-driven compaction is a proposed mechanism for the lithification of primordial bimodal granular mixtures from which many meteorites derive. We present a numerical-experimental mesoscale study that investigates the fundamental processes in shock compaction of this heterogeneous matter, using analog materials. Experiments were performed at the European Synchrotron Radiation Facility generating real-time, in-situ, X-ray radiographs of the shock's passage in representative granular systems. Mesoscale simulations were performed using a shock physics code and set-ups that were geometrically identical to the experiments. We considered two scenarios: pure matrix, and matrix with a single chondrule. Good agreement was found between experiments and models in terms of shock position and post-shock compaction in the pure powder setup. When considering a single grain embedded in matrix we observed a spatial porosity anisotropy in its vicinity; the compaction was greater in the region immediately shockward of the grain, and less in its lee. We introduced the porosity vector, C, which points in the direction of lowest compaction across a chondrule. This direction-dependent observation may present a new way to decode the magnitude, and direction, of a single shock wave experienced by a meteorite in the past.

Journal article

Timms NE, Pearce MA, Erickson TM, Cavosie AJ, Rae ASP, Wheeler J, Wittmann A, Ferriere L, Poelchau MH, Tomioka N, Collins GS, Gulick SPS, Rasmussen C, Morgan JV, Gulick SPS, Morgan JV, Chenot E, Christeson GL, Claeys P, Cockell CS, Coolen MJL, Ferriere L, Gebhardt C, Goto K, Green S, Jones H, Kring DA, Lofi J, Lowery CM, Ocampo-Torres R, Perez-Cruz L, Pickersgill AE, Poelchau MH, Rae ASP, Rasmussen C, Rebolledo-Vieyra M, Riller U, Sato H, Smit J, Tikoo SM, Tomioka N, Urrutia-Fucugauchi J, Whalen MT, Wittmann A, Xiao L, Yamaguchi KEet al., 2019, New shock microstructures in titanite (CaTiSiO5) from the peak ring of the Chicxulub impact structure, Mexico, Contributions to Mineralogy and Petrology, Vol: 174, ISSN: 0010-7999

Accessory mineral geochronometers such as apatite, baddeleyite, monazite, xenotime and zircon are increasingly being recognized for their ability to preserve diagnostic microstructural evidence of hypervelocity-impact processes. To date, little is known about the response of titanite to shock metamorphism, even though it is a widespread accessory phase and a U–Pb geochronometer. Here we report two new mechanical twin modes in titanite within shocked granitoid from the Chicxulub impact structure, Mexico. Titanite grains in the newly acquired core from the International Ocean Discovery Program Hole M0077A preserve multiple sets of polysynthetic twins, most commonly with composition planes (K1) = ~  {1¯11} , and shear direction (η1) = < 110 > , and less commonly with the mode K1 = {130}, η1 = ~ <522 > . In some grains, {130} deformation bands have formed concurrently with the deformation twins, indicating dislocation slip with Burgers vector b = < 341 > can be active during impact metamorphism. Titanite twins in the modes described here have not been reported from endogenically deformed rocks; we, therefore, propose this newly identified twin form as a result of shock deformation. Formation conditions of the twins have not been experimentally calibrated, and are here empirically constrained by the presence of planar deformation features in quartz (12 ± 5 and ~ 17 ± 5 GPa) and the absence of shock twins in zircon (< 20 GPa). While the lower threshold of titanite twin formation remains poorly constrained, identification of these twins highlight the utility of titanite as a shock indicator over the pressure range between 12 and 17 GPa. Given the challenges to find diagnostic indicators of shock metamorphism to identify both ancient

Journal article

Urrutia-Fucugauchi J, Pérez-Cruz L, Morgan J, Gulick S, Wittmann A, Lofi J, Morgan JV, Gulick SPS, Chenot E, Christeson G, Claeys P, Cockell C, Coolen MJL, Ferrière L, Gebhardt C, Goto K, Jones H, Kring DA, Lofi J, Lowery C, Mellett C, Ocampo-Torres R, Perez-Cruz L, Pickersgill A, Poelchau M, Rae A, Rasmussen C, Rebolledo-Vieyra M, Riller U, Sato H, Smit J, Tikoo-Schantz S, Tomioka N, Urrutia-Fucugauchi J, Whalen M, Wittmann A, Xiao L, Yamaguchi KE, Bralower T, Collins GSet al., 2019, Peering inside the peak ring of the Chicxulub Impact Crater—its nature and formation mechanism, Geology Today, Vol: 35, Pages: 68-72, ISSN: 0266-6979

© 2019 John Wiley & Sons Ltd, The Geologists' Association & The Geological Society of London The IODP-ICDP Expedition 364 drilled into the Chicxulub crater, peering inside its well-preserved peak ring. The borehole penetrated a sequence of post-impact carbonates and a unit of suevites and clast-poor impact melt rock at the top of the peak ring. Beneath this sequence, basement rocks cut by pre-impact and impact dykes, with breccias and melt, were encountered at shallow depths. The basement rocks are fractured, shocked and uplifted, consistent with dynamic collapse, uplift and long-distance transport of weakened material during collapse of the transient cavity and final crater formation.

Journal article

Bellucci JJ, Nemchin AA, Grange M, Robinson KL, Collins G, Whitehouse MJ, Snape JF, Norman MD, Kring DAet al., 2019, Terrestrial-like zircon in a clast from an Apollo 14 breccia, Earth and Planetary Science Letters, Vol: 510, Pages: 173-185, ISSN: 0012-821X

A felsite clast in lunar breccia Apollo sample 14321, which has been interpreted as Imbrium ejecta, has petrographic and chemical features that are consistent with formation conditions commonly assigned to both lunar and terrestrial environments. A simple model of Imbrium impact ejecta presented here indicates a pre-impact depth of 30–70 km, i.e. near the base of the lunar crust. Results from Secondary Ion Mass Spectrometry trace element analyses indicate that zircon grains recovered from this clast have positive Ce/Ce ⁎ anomalies corresponding to an oxygen fugacity +2 to +4 log units higher than that of the lunar mantle, with crystallization temperatures of 771±88 to 810 ± 37 °C (2σ) that are unusually low for lunar magmas. Additionally, Ti-in-quartz and zircon calculations indicate a pressure of crystallization of 6.9±1.2 kbar, corresponding to a depth of crystallization of 167±27 km on the Moon, contradicting ejecta modelling results. Such low-T, high-fO 2 , and high-P have not been observed for any other lunar clasts, are not known to exist on the Moon, and are broadly similar to those found in terrestrial magmas. The terrestrial-like redox conditions inferred for the parental magma of these zircon grains and other accessory minerals in the felsite contrasts with the presence of Fe-metal, bulk clast geochemistry, and the Pb isotope composition of K-feldspar grains within the clast, all of which are consistent with a lunar origin. The dichotomy between redox conditions and the depth of origin inferred from the zircon compositions compared to the ejecta modelling necessitates a multi-stage petrogenesis. Two, currently unresolvable hypotheses for the origin and history of the clast are allowed by these data. The first postulates that the relatively oxidizing conditions were developed in a lunar magma, possibly by fractional crystallization and enrichment of incompatible elements in a fluid-rich, phosphate-saturated magma

Journal article

Rae A, Collins G, Poelchau M, Riller U, Davison T, Grieve R, Osinski G, Morgan J, IODPICDP Expedition 364 Scientistset al., 2019, Stress-strain evolution during peak-ring formation: a case study of the Chicxulub impact structure, Journal of Geophysical Research: Planets, Vol: 124, Pages: 396-417, ISSN: 2169-9097

Deformation is a ubiquitous process that occurs to rocks during impact cratering; thus, quantifying the deformation of those rocks can provide first‐order constraints on the process of impact cratering. Until now, specific quantification of the conditions of stress and strain within models of impact cratering has not been compared to structural observations. This paper describes a methodology to analyze stress and strain within numerical impact models. This method is then used to predict deformation and its cause during peak‐ring formation: a complex process that is not fully understood, requiring remarkable transient weakening and causing a significant redistribution of crustal rocks. The presented results are timely due to the recent Joint International Ocean Discovery Program and International Continental Scientific Drilling Program drilling of the peak ring within the Chicxulub crater, permitting direct comparison between the deformation history within numerical models and the structural history of rocks from a peak ring. The modeled results are remarkably consistent with observed deformation within the Chicxulub peak ring, constraining the following: (1) the orientation of rocks relative to their preimpact orientation; (2) total strain, strain rates, and the type of shear during each stage of cratering; and (3) the orientation and magnitude of principal stresses during each stage of cratering. The methodology and analysis used to generate these predictions is general and, therefore, allows numerical impact models to be constrained by structural observations of impact craters and for those models to produce quantitative predictions.

Journal article

Hopkins RT, Osinski GR, Collins GS, 2019, Formation of complex craters in layered targets with material anisotropy, Journal of Geophysical Research: Planets, Vol: 124, Pages: 349-373, ISSN: 2169-9097

Meteorite impacts often occur in layered targets, where the strength of the target varies as a function of depth, but this complexity is often not represented in numerical impact simulations because of the high computational cost of resolving thin layers. To address this limitation, we developed a method to approximate the effect of multiple thin weak layers within a sedimentary sequence using a single material layer to represent the entire sequence. Our approach, implemented in the iSALE (impact‐Simplified Arbitrary Lagrangian Eulerian) shock physics code, combines an anisotropic yield criterion with a cell‐based method to track the orientation of layers. To demonstrate the efficacy of the method and constrain parameters of the anisotropic strength model required to replicate the effects of thin, weak layers, we compare results of simulations of a ~20 – 25‐km diameter complex crater on Earth using the new method to those from simulations that explicitly resolve multiple thin weak layers. We show that our approach allows for a reduction in computational cost, negating the need for an increase in spatial resolution to resolve thin layers in the target, while replicating crater formation and final morphology from the high‐resolution models. In keeping with field observations, we also find that anisotropic layers may be responsible for a lack of central uplift expression observed at many craters formed in targets with thick sedimentary layers (e.g., the Haughton and Ries impact structures).

Journal article

Rutherford ME, Derrick JG, Chapman DJ, Collins GS, Eakins DEet al., 2019, Insights into local shockwave behavior and thermodynamics in granular materials from tomography-initialized mesoscale simulations, Journal of Applied Physics, Vol: 125, ISSN: 0021-8979

Interpreting and tailoring the dynamic mechanical response of granular systems relies upon understanding how the initial arrangement of grains influences the compaction kinetics and thermodynamics. In this article, the influence of initial granular arrangement on the dynamic compaction response of a bimodal powder system (soda-lime distributed throughout a porous, fused silica matrix) was investigated through continuum-level and mesoscale simulations incorporating real, as-tested microstructures measured with X-ray tomography. By accounting for heterogeneities in the real powder composition, continuum-level simulations were brought into significantly better agreement with previously reported experimental data. Mesoscale simulations reproduced much of the previously unexplained experimental data scatter, gave further evidence of low-impedance mixture components dominating shock velocity dispersion, and crucially predicted the unexpectedly high velocities observed experimentally during the early stages of compaction. Moreover, only when the real microstructure was accounted for did simulations predict that small fractions of the fused silica matrix material would be driven into the β-quartz region of phase space. These results suggest that using real microstructures in mesoscale simulations is a critical step in understanding the full range of shock states achieved during dynamic granular compaction and interpreting solid phase distributions found in real planetary bodies.

Journal article

Svetsov V, Shuvalov V, Collins G, Popova Oet al., 2019, Impact Hazard of Large Meteoroids and Small Asteroids, Meteoroids: Sources of Meteors on Earth and Beyond, Pages: 275-298, ISBN: 9781108426718

Book chapter

Daubar I, Lognonné P, Teanby NA, Miljkovic K, Stevanović J, Vaubaillon J, Kenda B, Kawamura T, Clinton J, Lucas A, Drilleau M, Yana C, Collins GS, Banfield D, Golombek M, Kedar S, Schmerr N, Garcia R, Rodriguez S, Gudkova T, May S, Banks M, Maki J, Sansom E, Karakostas F, Panning M, Fuji N, Wookey J, van Driel M, Lemmon M, Ansan V, Böse M, Stähler S, Kanamori H, Richardson J, Smrekar S, Banerdt WBet al., 2018, Impact-seismic investigations of the InSight mission, Space Science Reviews, Vol: 214, ISSN: 0038-6308

Impact investigations will be an important aspect of the InSight mission. One of the scientific goals of the mission is a measurement of the current impact rate at Mars. Impacts will additionally inform the major goal of investigating the interior structure of Mars. In this paper, we review the current state of knowledge about seismic signals from impacts on the Earth, Moon, and laboratory experiments. We describe the generalized physical models that can be used to explain these signals. A discussion of the appropriate source time function for impacts is presented, along with spectral characteristics including the cutoff frequency and its dependence on impact momentum. Estimates of the seismic efficiency (ratio between seismic and impact energies) vary widely. Our preferred value for the seismic efficiency at Mars is 5 × 10 − 4, which we recommend using until we can measure it during the InSight mission, when seismic moments are not used directly. Effects of the material properties at the impact point and at the seismometer location are considered. We also discuss the processes by which airbursts and acoustic waves emanate from bolides, and the feasibility of detecting such signals. We then consider the case of impacts on Mars. A review is given of the current knowledge of present-day cratering on Mars: the current impact rate, characteristics of those impactors such as velocity and directions, and the morphologies of the craters those impactors create. Several methods of scaling crater size to impact energy are presented. The Martian atmosphere, although thin, will cause fragmentation of impactors, with implications for the resulting seismic signals. We also benchmark several different seismic modeling codes to be used in analysis of impact detections, and those codes are used to explore the seismic amplitude of impact-induced signals as a function of distance from the impact site. We predict a measurement of the current impact flux will be possibl

Journal article

Johnson BC, Andrews-Hanna JC, Collins G, Freed AM, Melosh HJ, Zuber MTet al., 2018, Controls on the formation of lunar multiring basins, Journal of Geophysical Research: Planets, Vol: 123, Pages: 3035-3050, ISSN: 2169-9097

Multiring basins dominate the crustal structure, tectonics, and stratigraphy of the Moon. Understanding how these basins form is crucial for understanding the evolution of ancient planetary crusts. To understand how preimpact thermal structure and crustal thickness affect the formation of multiring basins, we simulate the formation of lunar basins and their rings under a range of target and impactor conditions. We find that ring locations, spacing, and offsets are sensitive to lunar thermal gradient (strength of the lithosphere), temperature of the deep lunar mantle (strength of the asthenosphere), and preimpact crustal thickness. We also explore the effect of impactor size on the formation of basin rings and reproduce the observed transition from peak‐ring basins to multiring basins and reproduced many observed aspects of ring spacing and location. Our results are in broad agreement with the ring tectonic theory for the formation of basin rings and also suggest that ring tectonic theory applies to the rim scarp of smaller peak‐ring basins.

Journal article

Riller U, Poelchau MH, Rae A, Schulte FM, Collins GS, Melosh HJ, Grieve RAF, Morgan JV, Gulick SPS, Lofi J, Diaw A, McCall N, Kring DAet al., 2018, Rock fluidization during peak-ring formation of large impact structures, Nature, Vol: 562, Pages: 511-518, ISSN: 0028-0836

Large meteorite impact structures on the terrestrial bodies of the Solar System contain pronounced topographic rings, which emerged from uplifted target (crustal) rocks within minutes of impact. To flow rapidly over large distances, these target rocks must have weakened drastically, but they subsequently regained sufficient strength to build and sustain topographic rings. The mechanisms of rock deformation that accomplish such extreme change in mechanical behaviour during cratering are largely unknown and have been debated for decades. Recent drilling of the approximately 200-km-diameter Chicxulub impact structure in Mexico has produced a record of brittle and viscous deformation within its peak-ring rocks. Here we show how catastrophic rock weakening upon impact is followed by an increase in rock strength that culminated in the formation of the peak ring during cratering. The observations point to quasi-continuous rock flow and hence acoustic fluidization as the dominant physical process controlling initial cratering, followed by increasingly localized faulting.

Journal article

Luther R, Zhu M-H, Collins GS, Wunnemann Ket al., 2018, Effect of target properties and impact velocity on ejection dynamics and ejecta deposition, Meteoritics and Planetary Science, Vol: 53, Pages: 1705-1732, ISSN: 1086-9379

Impact craters are formed by the displacement and ejection of target material. Ejection angles and speeds during the excavation process depend on specific target properties. In order to quantify the influence of the constitutive properties of the target and impact velocity on ejection trajectories, we present the results of a systematic numerical parameter study. We have carried out a suite of numerical simulations of impact scenarios with different coefficients of friction (0.0–1.0), porosities (0–42%), and cohesions (0–150 MPa). Furthermore, simulations with varying pairs of impact velocity (1–20 km s−1) and projectile mass yielding craters of approximately equal volume are examined. We record ejection speed, ejection angle, and the mass of ejected material to determine parameters in scaling relationships, and to calculate the thickness of deposited ejecta by assuming analytical parabolic trajectories under Earth gravity. For the resulting deposits, we parameterize the thickness as a function of radial distance by a power law. We find that strength—that is, the coefficient of friction and target cohesion—has the strongest effect on the distribution of ejecta. In contrast, ejecta thickness as a function of distance is very similar for different target porosities and for varying impact velocities larger than ~6 km s−1. We compare the derived ejecta deposits with observations from natural craters and experiments.

Journal article

Collins GS, Rae ASP, Morgan JV, Gulick Set al., 2018, THE FORMATION OF PEAK RINGS IN LARGE IMPACT CRATERS, 81st Annual Meeting of the Meteoritical-Society, Publisher: WILEY, Pages: 6215-6215, ISSN: 1086-9379

Conference paper

Derrick J, LaJeunesse J, Davison T, Collins G, Borg Jet al., 2018, Mesoscale simulations of shock compaction of a granular ceramic: effects of mesostructure and mixed-cell strength treatment, Modelling and Simulation in Materials Science and Engineering, Vol: 26, ISSN: 0965-0393

The shock response of granular materials is important in a variety of contexts but the precise dynamics of grains during compaction is poorly understood. Here we use 2D mesoscale numerical simulations of the shock compaction of granular tungsten carbide to investigate the effect of internal structure within the particle bed and ’stiction’ between grains on the shock response. An increase in the average number of contactswith other particles, per particle, tends to shift the Hugoniot to higher shock velocities, lower particle velocities and lower densities. This shift is sensitive to inter-particle shear resistance. Eulerian shock physics codes approximate friction between, and interlocking of, grains with their treatment of mixed cell strength (stiction) and here we show thatthis has a significant effect on the shock response. When studying the compaction of particle beds it is not common to quantify the pre-compaction internal structure, yet our results suggest that such differences should be taken into account, either by usingidentical beds or by averaging results over multiple experiments.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: limit=30&id=00424523&person=true&page=3&respub-action=search.html