Imperial College London

DrGregoryHunt

Faculty of Natural SciencesDepartment of Physics

Research Associate
 
 
 
//

Contact

 

+44 (0)20 7594 7766g.hunt

 
 
//

Location

 

6M71Huxley BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

25 results found

Bader A, Badman SV, Ray LC, Paranicas CP, Lorch CTS, Clark G, André M, Mitchell DG, Constable DA, Kinrade J, Hunt GJ, Pryor Wet al., 2020, Energetic Particle Signatures Above Saturn's Aurorae, Journal of Geophysical Research: Space Physics, Vol: 125, ISSN: 2169-9380

© 2019. The Authors. Near the end of its mission, NASA's Cassini spacecraft performed several low-altitude passes across Saturn's auroral region. We present ultraviolet auroral imagery and various coincident particle and field measurements of two such passes, providing important information about the structure and dynamics of Saturn's auroral acceleration region. In upward field-aligned current regions, upward proton beams are observed to reach energies of several tens of keV; the associated precipitating electron populations are found to have mean energies of about 10 keV. With no significant wave activity being apparent, these findings indicate strong parallel potentials responsible for auroral acceleration, about 100 times stronger than at Earth. This is further supported by observations of proton conics in downward field-aligned current regions above the acceleration region, which feature a lower energy cutoff above (Formula presented.) 50 keV—indicating energetic proton populations trapped by strong parallel potentials while being transversely energized until they can overcome the trapping potential, likely through wave-particle interactions. A spacecraft pass through a downward current region at an altitude near the acceleration region reveals plasma wave features, which may be driving the transverse proton acceleration generating the conics. Overall, the signatures observed resemble those related to the terrestrial and Jovian aurorae, the particle energies and potentials at Saturn appearing to be significantly higher than at Earth and comparable to those at Jupiter.

Journal article

Andrews DJ, Cowley SWH, Provan G, Hunt GJ, Hadid LZ, Morooka MW, Wahlund J-Eet al., 2019, The Structure of Planetary Period Oscillations in Saturn's Equatorial Magnetosphere: Results From the Cassini Mission, JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, Vol: 124, Pages: 8361-8395, ISSN: 2169-9380

Journal article

Provan G, Cowley SWH, Bradley TJ, Bunce EJ, Hunt GJ, Cao H, Dougherty MKet al., 2019, Magnetic Field Observations on Cassini's Proximal Periapsis Passes: Planetary Period Oscillations and Mean Residual Fields, JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, Vol: 124, Pages: 8814-8864, ISSN: 2169-9380

Journal article

Cao H, Dougherty MK, Hunt GJ, Provan G, Cowley SWH, Bunce EJ, Kellock S, Stevenson DJet al., 2019, The landscape of Saturn’s internal magnetic field from the Cassini Grand Finale, Icarus, Pages: 113541-113541, ISSN: 0019-1035

Journal article

Bader A, Badman SV, Cowley SWH, Yao ZH, Ray LC, Kinrade J, Bunce EJ, Provan G, Bradley TJ, Tao C, Hunt GJ, Pryor WRet al., 2019, The Dynamics of Saturn's Main Aurorae, GEOPHYSICAL RESEARCH LETTERS, Vol: 46, Pages: 10283-10294, ISSN: 0094-8276

Journal article

Hunt G, Cowley S, Provan G, Cao H, Bunce E, Dougherty M, Southwood Det al., 2019, Currents associated with Saturn's intra-D ring azimuthal field perturbations, Journal of Geophysical Research: Space Physics, Vol: 124, Pages: 5675-5691, ISSN: 2169-9380

During the final 22 full revolutions of the Cassini mission in 2017, the spacecraft passed at periapsis near the noon meridian through the gap between the inner edge of Saturn’s D ring and the denser layers of the planet’s atmosphere, revealing the presence of an unanticipated low-latitude current system via the associated azimuthal perturbation field peaking typically at ~10-30 nT. Assuming approximate axisymmetry, here we use the field data to calculate the associated horizontal meridional currents flowing in the ionosphere at the feet of the field lines traversed, together with the exterior field-aligned currents required by current continuity. We show that the ionospheric currents are typically~0.5–1.5 MA per radian of azimuth, similar to auroral region currents, while the field-aligned current densities above the ionosphere are typically ~5-10 nA m-2 , more than an order less than auroral values. The principal factor involved in this difference is the ionospheric areas into which the currents map. While around a third of passes exhibit unidirectional currents flowing northward in the ionosphere closing southward along exterior field lines, many passes also display layers of reversed northward field-aligned current of comparable or larger magnitude in the region interior to the D ring, which may reverse sign again on the innermost field lines traversed. Overall, however, the currents generally show a high degree of north-south conjugacy indicative of an interhemispheric system, certainly on the larger overall spatial scales involved, if less so for the smaller-scale structures, possibly due to rapid temporal or local time variations.

Journal article

Sulaiman AH, Farrell WM, Ye S-Y, Kurth WS, Gurnett DA, Hospodarsky GB, Menietti JD, Pisa D, Hunt GJ, Agiwal O, Dougherty MKet al., 2019, A Persistent, Large-Scale, and Ordered Electrodynamic Connection Between Saturn and Its Main Rings, GEOPHYSICAL RESEARCH LETTERS, Vol: 46, Pages: 7166-7172, ISSN: 0094-8276

Journal article

Provan G, Cowley SWH, Bunce EJ, Bradley TJ, Hunt GJ, Cao H, Dougherty MKet al., 2019, Variability of Intra-D Ring Azimuthal Magnetic Field Profiles Observed on Cassini's Proximal Periapsis Passes, JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, Vol: 124, Pages: 379-404, ISSN: 2169-9380

Journal article

Khurana KK, Dougherty MK, Provan G, Hunt GJ, Kivelson MG, Cowley SWH, Southwood DJ, Russell CTet al., 2018, Discovery of atmospheric-wind-driven electric currents in Saturn's magnetosphere in the gap between Saturn and its rings, Geophysical Research Letters, Vol: 45, Pages: 10068-10074, ISSN: 0094-8276

Magnetic field observations obtained by the Cassini spacecraft as it traversed regions inside of Saturn's D ring packed a genuine surprise. The azimuthal component of the magnetic field recorded a consistent positive perturbation with a strength of 15–25 nT near closest approach. The closest approaches were near the equatorial plane of Saturn and were distributed narrowly around local noon and brought the spacecraft to within 2,550 km of Saturn's cloud tops. Modeling of this perturbation shows that it is not of internal origin but is produced by external currents that couple the low‐latitude northern ionosphere to the low‐latitude southern ionosphere. The azimuthal perturbations diminish at higher latitudes on field lines that connect to Saturn's icy rings. The sense of the current system suggests that the southern feet of the field lines in the ionosphere leads their northern counterparts. We show that the observed field perturbations are consistent with a field‐aligned current whose strength is ~1 MA/radian, that is, comparable in strength to the planetary‐period‐oscillation‐related current systems observed in the auroral zone. We show that the Lorentz force in the ionosphere extracts momentum from the faster moving low‐latitude zonal belt and delivers it to the northern ionosphere. We further show that the electric current is generated when the two ends of a field line are embedded in zonal flows with differing wind speeds in the low‐latitude thermosphere. The wind‐generated currents dissipate 2 × 1011W of thermal power, similar to the input from the solar extreme ultraviolet flux in this region.

Journal article

Dougherty MK, Cao H, Khurana KK, Hunt GJ, Provan G, Kellock S, Burton ME, Burk TA, Bunce EJ, Cowley SWH, Kivelson MG, Russell CT, Southwood DJet al., 2018, Saturn's magnetic field revealed by the Cassini Grand Finale (vol 362, eaat5434, 2018), SCIENCE, Vol: 362, ISSN: 0036-8075

Journal article

Dougherty MK, Cao H, Khurana KK, Hunt GJ, Provan G, Kellock S, Burton ME, Burk TA, Bunce EJ, Cowley SWH, Kivelson MG, Russell CT, Southwood DJet al., 2018, Saturn's magnetic field revealed by the Cassini Grand Finale, SCIENCE, Vol: 362, Pages: 46-+, ISSN: 0036-8075

Journal article

Lamy L, Zarka P, Cecconi B, Prange R, Kurth WS, Hospodarsky G, Persoon A, Morooka M, Wahlund J-E, Hunt GJet al., 2018, The low-frequency source of Saturn's kilometric radiation, SCIENCE, Vol: 362, Pages: 48-+, ISSN: 0036-8075

Journal article

Sulaiman AH, Kurth WS, Hospodarsky GB, Averkamp TF, Ye S-Y, Menietti JD, Farrell WM, Gurnett DA, Persoon AM, Dougherty MK, Hunt GJet al., 2018, Enceladus auroral hiss emissions during Cassini's grand finale, Geophysical Research Letters, Vol: 45, Pages: 7347-7353, ISSN: 0094-8276

Cassini's Radio and Plasma Wave Science (RPWS) instrument detected intense auroral hiss emissions during one of its perikrone passes of the Grand Finale orbits. The emissions were detected when Cassini traversed a flux tube connected to Enceladus' orbit (L‐shell = 4) and at a time when both the spacecraft and the icy moon were in similar longitudes. Previous observations of auroral hiss related to Enceladus were made only during close flybys and here we present the first observation of such emissions close to Saturn. Further, ray‐tracing analysis shows the source location at a latitude of 63°, in excellent agreement with earlier UVIS observations of Enceladus' auroral footprint by Pryor et al. (2011, https://doi.org/10.1038/nature09928). The detection has been afforded exclusively by the Grand Finale phase, which enabled sampling of Enceladus' high‐latitude flux tube near Saturn. This result provides new insight into the spatial extent of the electrodynamic interaction between Saturn and Enceladus.

Journal article

Hunt GJ, Provan G, Bunce EJ, Cowley SWH, Dougherty MK, Southwood DJet al., Field-aligned currents in Saturn’s magnetosphere: Observations from the F-ring orbits., Journal of Geophysical Research: Space Physics, Vol: 123, ISSN: 2169-9402

We investigate the azimuthal magnetic field signatures associated with high‐latitude field‐aligned currents observed during Cassini's F‐ring orbits (October 2016–April 2017). The overall ionospheric meridional current profiles in the northern and southern hemispheres, that is, the regions poleward and equatorward of the field‐aligned currents, differ most from the 2008 observations. We discuss these differences in terms of the seasonal change between data sets and local time (LT) differences, as the 2008 data cover the nightside while the F‐ring data cover the post‐dawn and dusk sectors in the northern and southern hemispheres, respectively. The F‐ring field‐aligned currents typically have a similar four current sheet structure to those in 2008. We investigate the properties of the current sheets and show that the field‐aligned currents in a hemisphere are modulated by that hemisphere's “planetary period oscillation” (PPO) systems. We separate the PPO‐independent and PPO‐related currents in both hemispheres using their opposite symmetry. The average PPO‐independent currents peak at ~1.5 MA/rad just equatorward of the open closed field line boundary, similar to the 2008 observations. However, the PPO‐related currents in both hemispheres are reduced by ~50% to ~0.4 MA/rad. This may be evidence of reduced PPO amplitudes, similar to the previously observed weaker equatorial oscillations at similar dayside LTs. We do not detect the PPO current systems' interhemispheric component, likely a result of the weaker PPO‐related currents and their closure within the magnetosphere. We also do not detect previously proposed lower latitude discrete field‐aligned currents that act to “turn off” the PPOs.

Journal article

Hunt GJ, Provan G, Cowley SWH, Dougherty MK, Southwood DJet al., Saturn's planetary period oscillations during the closest approach of Cassini's ring grazing orbits, Geophysical Research Letters, Vol: 45, Pages: 4692-4700, ISSN: 0094-8276

Saturn's planetary period oscillations (PPOs) are ubiquitous throughout its magnetosphere. We investigate the PPO's azimuthal magnetic field amplitude interior to the field‐aligned currents, during the closest approaches of Cassini's ring‐grazing orbits (October 2016 to April 2017), with periapses at ~2.5 RS. The amplitudes of the northern and southern PPO systems are shown to vary as a function of latitude. The amplitude ratio between the two PPO systems shows that the northern system is dominant by a factor of ~1.3 in the equatorial plane, and it is dominant to ~ −15° latitude in the southern hemisphere. The dayside amplitudes are approximately half of the 2008 nightside amplitudes, which agree with previous local time‐related amplitude observations. Overall, there is clear evidence that the PPOs are present on field lines that map to the outer edge of Saturn's rings, closer to Saturn than previously confirmed.

Journal article

Bradley TJ, Cowley SWH, Provan G, Hunt GJ, Bunce EJ, Wharton SJ, Alexeev II, Belenkaya ES, Kalegaev VV, Dougherty MKet al., 2018, Field-aligned currents in Saturn's nightside magnetosphere: subcorotation and planetary period oscillation components during northern spring, Journal of Geophysical Research: Space Physics, Vol: 123, Pages: 3602-3636, ISSN: 2169-9380

We newly analyze Cassini magnetic field data from the 2012/2013 Saturn northern spring interval of highly inclined orbits and compare them with similar data from late southern summer in 2008, thus providing unique information on the seasonality of the currents that couple momentum between Saturn's ionosphere and magnetosphere. Inferred meridional ionospheric currents in both cases consist of a steady component related to plasma subcorotation, together with the rotating current systems of the northern and southern planetary period oscillations (PPOs). Subcorotation currents during the two intervals show opposite north‐south polar region asymmetries, with strong equatorward currents flowing in the summer hemispheres but only weak currents flowing to within a few degrees of the open‐closed boundary (OCB) in the winter hemispheres, inferred due to weak polar ionospheric conductivities. Currents peak at ~1 MA rad−1 in both hemispheres just equatorward of the open‐closed boundary, associated with total downward polar currents ~6 MA, then fall across the narrow auroral upward current region to small values at subauroral latitudes. PPO‐related currents have a similar form in both summer and winter with principal upward and downward field‐aligned currents peaking at ~1.25 MA rad−1 being essentially collocated with the auroral upward current and approximately equal in strength. Though northern and southern PPO currents were approximately equal during both intervals, the currents in both hemispheres were dual modulated by both systems during 2012/2013, with approximately half the main current closing in the opposite ionosphere and half cross field in the magnetosphere, while only the northern hemisphere currents were similarly dual modulated in 2008.

Journal article

Provan G, Cowley SWH, Bradley TJ, Bunce EJ, Hunt GJ, Dougherty MKet al., 2018, Planetary period oscillations in Saturn's magnetosphere: Cassini magnetic field observations over the northern summer solstice interval, Journal of Geophysical Research: Space Physics, Vol: 123, Pages: 3859-3899, ISSN: 2169-9380

We determine properties of Saturn's planetary period oscillations from Cassini magnetic measurements over the ~2‐year interval from September 2015 to end of mission in September 2017, spanning Saturn northern summer solstice in May 2017. Phases of the northern system oscillations are derived over the whole interval, while those of the southern system are not discerned in initial equatorial data due to too low amplitude relative to the northern, but are determined once southern polar data become available from inclined orbits beginning May 2016. Planetary period oscillation periods are shown to be almost constant over these intervals at ~10.79 hr for the northern system and ~10.68 hr for the southern, essentially unchanged from values previously determined after the periods reversed in 2014. High cadence phase and amplitude data obtained from the short‐period Cassini orbits during the mission's last 10 months newly reveal the presence of dual modulated oscillations varying at the beat period of the two systems (~42 days) on nightside polar field lines in the vicinity (likely either side) of the open‐closed field boundary. The modulations differ from those observed previously in the equatorial region, indicative of a reversal in sign of the radial component oscillations, but not of the colatitudinal component oscillations. Brief discussion is given of a possible theoretical scenario. While weak equatorial beat modulations indicate a north/south amplitude ratio >5 early in the study interval, polar and equatorial region modulations suggest a ratio ~1.4 during the later interval, indicating a significant recovery of the southern system.

Journal article

Hunt GJ, Cowley SWH, Nichols JD, 2018, Ionospheric Currents due to Ionosphere-Magnetosphere Coupling at Jupiter and Saturn, AGU Chapman Conference on Currents in Geospace and Beyond, Publisher: AMER GEOPHYSICAL UNION, Pages: 459-475, ISSN: 0065-8448

Conference paper

Davies E, Masters A, Dougherty M, Hansen K, Coates A, Hunt Get al., 2017, Swept Forward Magnetic Field Variability in High-Latitude Regions of Saturn's Magnetosphere, Journal of Geophysical Research: Space Physics, Vol: 122, Pages: 12328-12337, ISSN: 2169-9380

Swept forward field is the term given to configurations of magnetic field wherein the field lines deviate from the meridional planes of a planet in the direction of its rotation. Evidence is presented for swept-forward field configurations on Cassini orbits around Saturn from the first half of 2008. These orbits were selected on the basis of high inclination, spatial proximity, and temporal proximity, allowing for the observation of swept-forward field and resolution of dynamic effects using data from the Cassini magnetometer. Nine orbits are surveyed; all show evidence of swept-forward field, with typical sweep angle found to be 23°. Evidence is found for transient events that lead to temporary dramatic increases in sweep-forward angle. The Michigan Solar Wind Model is employed to investigate temporal correlation between the arrivals of solar wind shocks at Saturn with these transient events, with two shown to include instances corresponding with solar wind shock arrivals. Measurements of equatorial electron number density from anode 5 of the Cassini Plasma Spectrometer instrument are investigated for evidence of magnetospheric compression, corresponding with predicted shock arrivals. Potential mechanisms for the transfer of momentum from the solar wind to the magnetosphere are discussed.

Journal article

Cowley SWH, Provan G, Hunt GJ, Jackman CMet al., 2017, Planetary period modulations of Saturn's magnetotail current sheet: A simple illustrative mathematical model, JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, Vol: 122, Pages: 258-279, ISSN: 2169-9380

Journal article

Provan G, Cowley SWH, Lamy L, Bunce EJ, Hunt GJ, Zarka P, Dougherty MKet al., 2016, Planetary period oscillations in Saturn's magnetosphere: coalescence and reversal of northern and southern periods in late northern spring, Journal of Geophysical Research: Space Physics, Vol: 121, Pages: 9829-9862, ISSN: 2169-9402

We investigate planetary period oscillations (PPOs) in Saturn's magnetosphere using Cassini magnetic field and Saturn kilometric radiation (SKR) data over the interval from late 2012 to the end of 2015, beginning ~3 years after vernal equinox and ending ~1.5 years before northern solstice. Previous studies have shown that the northern and southern PPO periods converged across equinox from southern summer values ~10.8 h for the southern system and ~10.6 h for the northern system and near coalesced ~1 year after equinox, before separating again with the southern period ~10.69 h remaining longer than the northern ~10.64 h. We show that these conditions ended in mid-2013 when the two periods coalesced at ~10.66 h and remained so until mid-2014, increasing together to longer periods ~10.70 h. During coalescence the two systems were locked near magnetic antiphase with SKR modulations in phase, a condition in which the effects of the generating rotating twin vortex flows in the two ionospheres reinforce each other via hemisphere-to-hemisphere coupling. The magnetic-SKR relative phasing indicates the dominance of postdawn SKR sources in both hemispheres, as was generally the case during the study interval. In mid-2014 the two periods separated again, the northern increasing to ~10.78 h by the end of 2015, similar to the southern period during southern summer, while the southern period remained fixed near ~10.70 h, well above the northern period during southern summer. Despite this difference, this behavior resulted in the first enduring reversal of the two periods, northern longer than southern, during the Cassini era.

Journal article

Hunt GJ, Cowley SWH, Provan G, Bunce EJ, Alexeev II, Belenkaya ES, Kalegaev VV, Dougherty MK, Coates AJet al., 2016, Field-aligned currents in Saturn's magnetosphere: local time dependence of southern summer currents in the dawn sector between midnight and noon, Journal of Geophysical Research: Space Physics, Vol: 121, Pages: 7785-7804, ISSN: 2169-9402

We examine and compare the magnetic field perturbations associated with field-aligned ionosphere-magnetosphere coupling currents at Saturn, observed by the Cassini spacecraft during two sequences of highly inclined orbits in 2006/2007 and 2008 under late southern summer conditions. These sequences explore the southern currents in the dawn-noon and midnight sectors, respectively, thus allowing investigation of possible origins of the local time (LT) asymmetry in auroral Saturn kilometric radiation (SKR) emissions, which peak in power at ~8 h LT in the dawn-noon sector. We first show that the dawn-noon field data generally have the same four-sheet current structure as found previously in the midnight data and that both are similarly modulated by “planetary period oscillation” (PPO) currents. We then separate the averaged PPO-independent (e.g., subcorotation) and PPO-related currents for both LT sectors by using the current system symmetry properties. Surprisingly, we find that the PPO-independent currents are essentially identical within uncertainties in the dawn-dusk and midnight sectors, thus providing no explanation for the LT dependence of the SKR emissions. The main PPO-related currents are, however, found to be slightly stronger and narrower in latitudinal width at dawn-noon than at midnight, leading to estimated precipitating electron powers, and hence emissions, that are on average a factor of ~1.3 larger at dawn-noon than at midnight, inadequate to account for the observed LT asymmetry in SKR power by a factor of ~2.7. Some other factors must also be involved, such as a LT asymmetry in the hot magnetospheric auroral source electron population.

Journal article

Nichols JD, Badman SV, Bunce EJ, Clarke JT, Cowley SWH, Hunt GJ, Provan Get al., 2016, Saturn's northern auroras as observed using the Hubble Space Telescope, Icarus, Vol: 263, Pages: 17-31, ISSN: 0019-1035

We discuss the features of Saturn’s northern FUV auroras as observed during a program of Hubble Space Telescope observations which executed over 2011–2013 and culminated, along with Cassini observations, in a comprehensive multi-spectral observing campaign. Our 2011–2013 observations of the northern aurora are also compared with those from our 2007–2008 observation of the southern aurora. We show that the variety of morphologies of the northern auroras is broadly consistent with the southern, and determine the statistical equatorward and poleward boundary locations. We find that our boundaries are overall consistent with previous observations, although a modest poleward displacement of the poleward boundaries is due to the increased prevalence of poleward auroral patches in the noon and afternoon sectors during this program, likely due to the solar wind interaction. We also show that the northern auroral oval oscillates with the northern planetary period oscillation (PPO) phase in an elongated ellipse with semi-major axis ∼1.6° oriented along the post-dawn/post-dusk direction. We further show that the northern auroras exhibit dawn-side brightenings at zero northern magnetic PPO phase, although there is mixed evidence of auroral emissions fixed in the rotating frame of the northern PPO current system, such that overall the dependence of the auroras on northern magnetic phase is somewhat weak.

Journal article

Hunt GJ, Cowley SWH, Provan G, Bunce EJ, Alexeev II, Belenkaya ES, Kalegaev VV, Dougherty MK, Coates AJet al., 2015, Field-aligned currents in Saturn's northern nightside magnetosphere: Evidence for interhemispheric current flow associated with planetary period oscillations, Journal of Geophysical Research: Space Physics, Vol: 120, Pages: 7552-7584, ISSN: 2169-9402

We investigate the magnetic perturbations associated with field-aligned currents observed on 34 Cassini passes over the premidnight northern auroral region during 2008. These are found to be significantly modulated not only by the northern planetary-period oscillation (PPO) system, similar to the southern currents by the southern PPO system found previously, but also by the southern PPO system as well, thus providing the first clear evidence of PPO-related interhemispheric current flow. The principal field-aligned currents of the two PPO systems are found to be co-located in northern ionospheric colatitude, together with the currents of the PPO-independent (subcorotation) system, located between the vicinity of the open-closed field boundary and field lines mapping to ~9 Saturn radius (Rs) in the equatorial plane. All three systems are of comparable magnitude, ~3 MA in each PPO half-cycle. Smaller PPO-related field-aligned currents of opposite polarity also flow in the interior region, mapping between ~6 and ~9 Rs in the equatorial plane, carrying a current of ~ ±2 MA per half-cycle, which significantly reduce the oscillation amplitudes in the interior region. Within this interior region the amplitudes of the northern and southern oscillations are found to fall continuously with distance along the field lines from the corresponding hemisphere, thus showing the presence of cross-field currents, with the southern oscillations being dominant in the south, and modestly lower in amplitude than the northern oscillations in the north. As in previous studies, no oscillations related to the opposite hemisphere are found on open field lines in either hemisphere.

Journal article

Hunt GJ, Cowley SWH, Provan G, Bunce EJ, Alexeev II, Belenkaya ES, Kalegaev VV, Dougherty MK, Coates AJet al., 2014, Field-aligned currents in Saturn's southern nightside magnetosphere: Subcorotation and planetary period oscillation components, JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, Vol: 119, ISSN: 2169-9380

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00914200&limit=30&person=true