Imperial College London

ProfessorGeoffreyMaitland

Faculty of EngineeringDepartment of Chemical Engineering

Professor of Energy Engineering
 
 
 
//

Contact

 

+44 (0)20 7594 1830g.maitland

 
 
//

Location

 

318ACE ExtensionSouth Kensington Campus

//

Summary

 

Summary

Career Summary

Date
Role
 2014-15  President, Institution of Chemical Engineers
 2013-14  Deputy President, Institution of Chemical Engineers
 2008-  Director, Qatar Carbonates and Carbon Storage Research Centre
 2006-11  Director, Shell Grand Challenge Programme on Clean Fossil Fuels
 2005-  Professor of Energy Engineering, Imperial College London
 1993-2005  Visiting Professor, Department of Chemical Engineering, Imperial College London
 2001-2005  Research Director, Schlumberger Cambridge Research
 1998-2001  Scientific Advisor to Managing Director, Schlumberger Cambridge Research
 1996-98  Chemistry Metier Manager, Schlumberger-Riboud Product Centre, Clamart, Paris, France
 1988-95  Head of Department, Oilfield Fluid Engineering, Schlumberger Cambridge Research
 1985-88  Senior Research Scientist/Programme Leader, Schlumberger Cambridge Research
 1983-86  Senior Lecturer, Department of Chemical Engineering and Chemical Technology, Imperial College, London
 1979-81  Industrial Research Scientist , I.C.I. Petrochemicals and Plastics Division (Secondment from Imperial College London)
 1974-83  Lecturer in Applied Polymer Science, Department of Chemical Engineering and Chemical Technology, Imperial College London
 1972-74  I.C.I. Research Fellow, Department of Physical Chemistry, University of Bristol
 1969-72  D.Phil., Physical Chemistry, Oxford University
 Salters' Scholar, and Senior Scholar St. Catherine's College
 1965-69  M.A., First Class  Honours, Chemistry, St Catherine’s College, Oxford

Biography

Geoff Maitland is Professor of Energy Engineering at Imperial College London, with a career that has straddled industry and academia.  He studied Chemistry at Oxford University where he also obtained his doctorate in Physical Chemistry.  After a period as an ICI Research Fellow at Bristol University, he was appointed to a lectureship in Chemical Engineering at Imperial College in 1974.  He spent a secondment with ICI Plastics Division from 1979-81 and became a senior lecturer in 1983.  

In 1986 Geoff moved to the oil and gas industry with Schlumberger, where he led research in oilfield fluids engineering for well construction, reservoir stimulation and production enhancement.  He held a number of senior technical and research management positions in Cambridge and Paris, most recently as a Research Director.  He rejoined Imperial College in September 2005 as Professor of Energy Engineering and his current research covers clean and efficient fossil fuel production and use, with particular emphasis on carbon dioxide capture and storage processes, recovery of non-conventional hydrocarbons including methane hydrate production and energy-related reactor engineering.   He is the founding Director of the Qatar Carbonates and Carbon Storage Research Centre (QCCSRC), a $70m, 10 year research collaboration with Qatar Petroleum, Shell and Qatar Science and Technology Park.  

Geoff is a Fellow of the Institution of Chemical Engineers, the Royal Society of Chemistry and the Energy Institute.  In 2006 he was elected a Fellow of the Royal Academy of Engineering.  He was awarded the Hutchison Medal by the Institution of Chemical Engineers in 1998 and served as President of the British Society of Rheology from 2002-2005. He was awarded the IChemE Chemical Engineering Envoy Award for 2010 for his media work explaining the engineering issues involved in the Gulf of Mexico oil-spill.  In 2011 he chaired the independent review of the UK Offshore Oil and Gas Regulatory Regime (‘The Maitland Report’) and in 2012 received the Rideal Lecture Award from the Royal Society of Chemistry.  Geoff is Deputy President of the IChemE and will serve as President in 2014-15.

Research Interests

The common thread running through my research interests over the years has been the links between interactions at the molecular/colloidal level and the bulk properties of materials.  This started with the thermophysical properties of simple molecular fluids but moved on to polymer dynamics, rheology and reactors in the 1970s.  On joining Schlumberger in 1986, I initiated research in oilfield fluids engineering, including the use of colloidal systems for well construction, reservoir stimulation and production enhancement.  Amongst the my areas of interest in this period were the physical properties of complex fluids and soft solids, and their relation to colloidal interactions and structure, the chemomechanics of shale clayrocks and clay compacts, the chemical characterisation of muticomponent complex fluids, chemical mechanisms and chemomechanics of hydrating cements, responsive gelling fluids and their flow in fractures/porous media, reservoir fluid monitoring and real-time reservoir management approaches.  I still retain an interest in the rheology of mixed-colloid suspensions and gels and their oilfield applications.

My current research, established when I moved back to Imperial College London in 2005, centres on finding answers to the question ‘How can we continue to use fossil fuels for most of this century (as I believe we must) without causing catastrophic climate change?’.   The work aims to provide solutions for managing the transition from oil, gas and coal to more sustainable, renewable energy sources and vectors.  Click here for my overall vision of how we can build a clean fossil fuels future to give us time to develop affordable, high capacity, renewable zero CO2 emission energy systems later in this century.  

The research is built around three main themes:

(a)    Carbon Capture and Storage
I am the founding Director of the Qatar Carbonates and Carbon Storage Research Centre, QCCSRC, a 10 year $70m research programme sponsored by Qatar Petroleum, Shell and Qatar Science and Technology Park.  This aims to provide the underpinning science and engineering to optimise the design of safe and secure CO2 injection and storage processes into the fractured carbonate reservoirs of the Middle East and elsewhere.  It has activities on understanding the geology, structure and geochemistry of carbonate reservoirs; measuring and predicting the thermodynamic and transport properties of CO2 mixed with the hydrocarbon and brine fluids it encounters within the storage reservoirs, and with impurities such as H2S and SO2, under high temperature, high pressure (HPHT) reservoir conditions; the reaction of supercritical CO2 and its aqueous solutions with carbonate rock minerals; the multiphase flow of CO2-brine-hydrocarbon fluids within porous and fractured carbonate reservoirs, studied experimentally (including state-of-the-art CT imaging facilities) and with modelling at the pore, core and reservoir scales; the integration and upscaling of these processes into advanced reservoir simulators for site selection, design and optimisation of carbon storage processes; evaluation of the understanding and methodologies developed in the programme using field-scale demonstration projects.

My own research in the programme focuses on the experimental measurement of the relevant themophysical properties of CO2-brine-hydrocarbon fluids under HPHT reservoir conditions and the use of such data to calibrate, validate and use molecular-based equations of state and transport property models to enable the properties of fluid mixtures of arbitrary composition to be predicted as a function of temperature and pressure as they move through a reservoir.  In this work I collaborate closely with Professor J P Martin Trusler, Professor George Jackson, Professor Amparo Galindo and Professor Velisa Vesovic. The main properties of interest are:
-    Vapour-liquid phase behaviour
-    Interfacial tension and fluid-mineral contact angles
-    Transport properties: viscosity and diffusion
-    Mineral-CO2 reaction kinetics
Click here to see more details of the Thermophysics Lab.
We work with other groups within QCCSRC on how the data and predictive models for these properties may be incorporated into pore-scale models and reservoir simulators for CO2 storage design.

QCCSRC was preceded by the Shell-Imperial Grand Challenge, a 5 year, £3m programme on the science and engineering of CO2 storage in sandstone reservoirs and unmined coal seams.  The understanding developed in this programme continues to be built upon in QCCSRC.

I am also interested in developing more efficient and cost-effective carbon capture processes and collaborate with Dr Paul Fennell in a number of areas, including
-    Improved amine-based mixed-solvent capture systems
-    Use of calcium looping systems in pyrolysis and combustion of biomass
 
(b)    Exploitation of non-conventional sources of hydrocarbons
Although conventional oil and gas may breach peak production in the next decade or two, there is little danger of the world running out of fossil fuels.  Unconventional oil and gas represent an even greater resource than conventional sources; they are just more difficult and challenging to extract, current processes being generally more energy intensive and having a higher carbon footprint.  My research is seeking ways to recover and utilise these non-conventional resources in ways that minimise the energy input required and the CO2 emissions from the processes.  The areas covered include:
-    Subsurface processing of heavy oil, tar sands and oil shales, combined with in situ carbon capture and storage
-    The production of non-conventional gas (gas hydrates, shale gas) using CO2  to enhance production before being sequestered in the producing formation

(c)    Renewable production of hydrogen using green algae and cyanobacteria
The aim of developing low/zero-emission fossil fuel processes is to provide low carbon, cost-effective energy in sufficient amounts to meet growing global demand until renewable, sustainable sources of energy, fuels, chemicals and materials become available at sufficient scale and affordable cost to take over. The most likely long-term source of global energy will be solar, where capturing but a small fraction of the energy reaching the earth’s surface will meet all our energy needs on a continuing basis.  As well as converting solar radiation to electrons for electricity supply, it may also be directly converted to fuels and chemicals.  My research is this area, carried out in collaboration with Dr Klaus Hellgardt, has been investigating processes for the direct production of hydrogen (as a zero-carbon fuel or energy vector) from water using sunlight and the enzymatic conversion pathways embedded in natural micro-organisms such as green algae and cyanobacteria.  The work investigates both the underlying mechanisms and the design of photo-bioreactors at different scales to explore the possibility of large-scale commercial hydrogen production processes based on this approach.   Click here for more information on solar routes to hydrogen.

Links

Selected Publications

Journal Articles

Li X, Boek E, Maitland GC, et al., 2012, Interfacial Tension of (Brines + CO2): (0.864 NaCl+0.136 KCl) at Temperatures between (298 and 448) K, Pressures between (2 and 50) MPa, and Total Molalities of (1 to 5) mol.kg(-1), Journal of Chemical and Engineering Data, Vol:57, ISSN:0021-9568, Pages:1078-1088

Georgiadis A, Llovell F, Bismarck A, et al., 2010, Interfacial tension measurements and modelling of (carbon dioxide plus n-alkane) and (carbon dioxide plus water) binary mixtures at elevated pressures and temperatures, Journal of Supercritical Fluids, Vol:55, ISSN:0896-8446, Pages:743-754

Ciotta F, Maitland G, Smietana M, et al., 2009, Viscosity and Density of Carbon Dioxide+2,6,10,15,19,23-Hexamethyltetracosane (Squalane), Journal of Chemical and Engineering Data, Vol:54, ISSN:0021-9568, Pages:2436-2443

ten Brinke AJW, Bailey L, Lekkerkerker HNW, et al., 2008, Rheology modification in mixed shape colloidal dispersions. Part II: mixtures, Soft Matter, Vol:4, ISSN:1744-683X, Pages:337-348

More Publications