Imperial College London

Krishnan

Faculty of EngineeringDepartment of Chemical Engineering

Senior Lecturer
 
 
 
//

Contact

 

+44 (0)20 7594 6633j.krishnan

 
 
//

Location

 

C503Roderic Hill BuildingSouth Kensington Campus

//

Summary

 

Summary

DateRole
2006- Lecturer, Senior Lecturer in Chemical Engineering, Imperial College London
2001-2005 Associate Research Scientist, Dept. of Electrical Engineering, Johns Hopkins University
1994-2000 PhD, Chemical Engineering, Princeton University. Thesis Title: Patterns and their instabilities in CO oxidation on Pt(110).
1990-1994 B.Tech, Chemical Engineering, Indian Institute of Technology, Madras (Chennai).

Research Interests

 

 

 

 

The unifying theme of the research in my group is the elucidation and manipulation of information processing in cells and tissues. This is achieved through a combination of (i) Mathematical modelling (ii) Theoretical work (iii) Systems approaches, including tool development and (iv) Collaboration with a range of experimentalists including cell biologists, biomedical scientists and engineers and synthetic biologists. Characteristic of this research area is the diversity of problems at different levels and scales, the broad potential for application and the rich confluence of the natural sciences (biology, physics, chemistry), mathematics and engineering, including systems engineering. There are also non-biological analogues and extensions of this work. This is discussed briefly below and in more detail in the research page.

The regulation of most aspects of cellular life and functioning is accomplished by complex and sophisticated biochemical (signal transduction,metabolic) and gene regulatory networks.  Understanding the functioning of  and information processing through such networks at both the intracellular level as well as the intercellular level (accounting for cellular communication and interaction) is of importance from both basic and applied perspectives. This is because information processing through these networks is the key ingredient which allows us to understand how cells regulate different processes, respond to their environment, interact with one another and affords ways of controlling or manipulating them through synthetic and other means. 

The research in my group employs an interdisciplinary engineering approach in this context, and has two broad strands. (i) Mathematical and computational modelling in a selection of concrete problems of basic and applied interest, in collaboration with a range of experimentalists (cell biologists, biomedical scientists and engineers, synthetic biologists). (ii) Theoretical and systems work, including tool development towards the elucidation and systematic manipulation of information processing in cells and tissues.The research of each strand informs the other, and employing both approaches allows for a synergistic interplay between the two.

 

Links

Centre for Process Systems Engineering

Institute of Systems and Synthetic Biology

Selected Publications

Journal Articles

Liu C, Krishnan J, Xu XY, 2013, Investigating the effects of ABC transporter-based acquired drug resistance mechanisms at the cellular and tissue scale, Integrative Biology, Vol:5, ISSN:1757-9694, Pages:555-568

Betney R, de Silva E, Mertens C, et al., 2012, Regulation of release factor expression using a translational negative feedback loop: A systems analysis, RNA, Vol:18, ISSN:1355-8382, Pages:2320-2334

Alam-Nazki A, Krishnan J, 2012, An investigation of spatial signal transduction in cellular networks, BMC Systems Biology, Vol:6, ISSN:1752-0509

Alam-Nazki A, Krishnan J, 2010, A mathematical modelling framework for understanding chemorepulsive signal transduction in Dictyostelium, Journal of Theoretical Biology, Vol:266, ISSN:0022-5193, Pages:140-153

More Publications