Imperial College London

ProfessorJulianMarchesi

Faculty of MedicineDepartment of Metabolism, Digestion and Reproduction

Professor of Digestive Health
 
 
 
//

Contact

 

+44 (0)20 3312 6197j.marchesi

 
 
//

Location

 

Queen Elizabeth the Queen Mother Wing (QEQM)St Mary's Campus

//

Summary

 

Publications

Publication Type
Year
to

333 results found

Pruski P, Dos Santos Correia G, Lewis H, Capuccini K, Inglese P, Chan D, Brown R, Kindinger L, Lee Y, Smith A, Marchesi J, McDonald J, Cameron S, Alexander-Hardiman K, David A, Stock S, Norman J, Terzidou V, Teoh TG, Sykes L, Bennett P, Takats Z, MacIntyre Det al., 2021, Direct on-swab metabolic profiling of vaginal microbiome host interactions during pregnancy and preterm birth, Nature Communications, ISSN: 2041-1723

Journal article

Lythgoe MP, Ghani R, Mullish BH, Marchesi JR, Krell Jet al., 2021, The Potential of Faecal Microbiota Transplantation in Oncology, Trends in Microbiology, ISSN: 0966-842X

Journal article

Radhakrishnan ST, Alexander JL, Mullish BH, Gallagher KI, Powell N, Hicks LC, Hart AL, Li JV, Marchesi JR, Williams HRTet al., 2021, Systematic Review: The association between the gut microbiota and medical therapies in inflammatory bowel disease, Alimentary Pharmacology and Therapeutics, ISSN: 0269-2813

Journal article

Hansen R, Bajaj-Elliott M, Hold GL, Gerasimidis K, Iqbal TH, Amos G, Thomas LV, Marchesi JR, Gut Microbiota for Health expert panel of British Society of Gastroenterologyet al., 2021, Next-generation sequencing as a clinical laboratory tool for describing different microbiotas: an urgent need for future paediatric practice., Arch Dis Child, Vol: 106

Journal article

Mitra A, MacIntyre D, Paraskevaidi M, Moscicki A-B, Mahajan V, Smith A, Lyons D, Paraskevaidis E, Marchesi J, Bennett P, Kyrgiou Met al., 2021, The Vaginal Microbiota and Innate Immunity After Local Excisional Treatment for Cervical Intraepithelial Neoplasia, Genome Medicine: medicine in the post-genomic era, ISSN: 1756-994X

Journal article

Garaiova I, Paduchová Z, Nagyová Z, Wang D, Michael DR, Plummer SF, Marchesi JR, Ďuračková Z, Muchová Jet al., 2021, Probiotics with vitamin C for the prevention of upper respiratory tract symptoms in children aged 3-10 years: randomised controlled trial., Benef Microbes, Pages: 1-10

In a double-blind, randomised, parallel-group, placebo-controlled study, healthy school children aged 3-10 years received a probiotic based supplement daily for 6 months to assess the impact on the incidence and duration of upper respiratory tract infection (URTI) symptoms. The intervention comprised Lab4 probiotic (Lactobacillus acidophilus CUL21 and CUL60, Bifidobacterium bifidum CUL20 and Bifidobacterium animalis subsp. lactis CUL34) at 12.5 billion cfu/day plus 50 mg vitamin C or a matching placebo. 171 children were included in the analysis (85 in placebo and 86 in active group). Incidence of coughing was 16% (P=0.0300) significantly lower in the children receiving the active intervention compared to the placebo. No significant differences in the incidence rate of other URTI symptoms were observed. There was significantly lower risk of experiencing five different URTI related symptoms in one day favouring the active group (Risk ratio: 0.31, 95% confidence interval: 0.12, 0.81, P=0.0163). Absenteeism from school and the use of antibiotics was also significantly reduced for those in the active group (-16%, P=0.0060 and -27%, P=0.0203, respectively). Our findings indicate that six months daily supplementation with the Lab4 probiotic and vitamin C combination reduces the incidence of coughing, absenteeism and antibiotic usage in 3 to 10 year old children.

Journal article

Allegretti JR, Kelly CR, Grinspan A, Mullish BH, Hurtado J, Carrellas M, Marcus J, Marchesi JR, McDonald JAK, Gerardin Y, Silverstein M, Pechlivanis A, Barker GF, Miguens Blanco J, Alexander JL, Gallagher KI, Pettee W, Phelps E, Nemes S, Sagi SV, Bohm M, Kassam Z, Fischer Met al., 2021, Inflammatory bowel disease outcomes following fecal microbiota transplantation for recurrent C. difficile infection, Inflammatory Bowel Diseases, Vol: 27, Pages: 1371-1378, ISSN: 1078-0998

BackgroundRecurrent Clostridioides difficile infection (CDI) in patients with inflammatory bowel disease (IBD) is a clinical challenge. Fecal microbiota transplantation (FMT) has emerged as a recurrent CDI therapy. Anecdotal concerns exist regarding worsening of IBD activity; however, prospective data among IBD patients are limited.MethodsSecondary analysis from an open-label, prospective, multicenter cohort study among IBD patients with 2 or more CDI episodes was performed. Participants underwent a single FMT by colonoscopy (250 mL, healthy universal donor). Secondary IBD-related outcomes included rate of de novo IBD flares, worsening IBD, and IBD improvement—all based on Mayo or Harvey-Bradshaw index (HBI) scores. Stool samples were collected for microbiome and targeted metabolomic profiling.ResultsFifty patients enrolled in the study, among which 15 had Crohn’s disease (mean HBI, 5.8 ± 3.4) and 35 had ulcerative colitis (mean partial Mayo score, 4.2 ± 2.1). Overall, 49 patients received treatment. Among the Crohn’s disease cohort, 73.3% (11 of 15) had IBD improvement, and 4 (26.6%) had no disease activity change. Among the ulcerative colitis cohort, 62% (22 of 34) had IBD improvement, 29.4% (11 of 34) had no change, and 4% (1 of 34) experienced a de novo flare. Alpha diversity significantly increased post-FMT, and ulcerative colitis patients became more similar to the donor than Crohn’s disease patients (P = 0.04).ConclusionThis prospective trial assessing FMT in IBD-CDI patients suggests IBD outcomes are better than reported in retrospective studies.

Journal article

Innes AJ, Mullish BH, Ghani R, Szydlo RM, Apperley JF, Olavarria E, Palanicawandar R, Kanfer EJ, Milojkovic D, McDonald JAK, Brannigan ET, Thursz MR, Williams HRT, Davies FJ, Marchesi JR, Pavlu Jet al., 2021, Fecal microbiota transplant mitigates adverse outcomes in patients colonized with multidrug-resistant organisms undergoing allogeneic hematopoietic cell transplantation, Frontiers in Cellular and Infection Microbiology, Vol: 11, Pages: 1-8, ISSN: 2235-2988

The gut microbiome can be adversely affected by chemotherapy and antibiotics prior to hematopoietic cell transplantation (HCT).This affects graft success and increases susceptibility to multidrug-resistant organism (MDRO) colonization and infection. Weperformed an initial retrospective analysis of our use of fecal microbiota transplantation (FMT) from healthy donors as therapy forMDRO-colonized patients with hematological malignancy. FMT was performed on eight MDRO-colonized patients pre-HCT (FMT-MDROgroup), and outcomes compared with 11 MDRO colonized HCT patients from the same period. At 12 months, survival wassignificantly higher in the FMT-MDRO group (70% versus 36% p = 0.044). Post-HCT, fewer FMT-MDRO patients required intensivecare (0% versus 46%, P = 0.045) or experienced fever (0.29 versus 0.11 days, P = 0.027). Intestinal MDRO decolonization occurred in25% of FMT-MDRO patients versus 11% non-FMT MDRO patients. Despite the significant difference and statistically comparablepatient/transplant characteristics, as the sample size was small, a matched-pair analysis to non-MDRO colonized control cohorts(2:1 matching) was performed. At 12 months, the MDRO group who did not have an FMT had significantly lower survival (36.4%versus 61.9% respectively, p=0.012), and higher non relapse mortality (NRM; 60.2% versus 16.7% respectively, p=0.009) than theirpaired non-colonized cohort. There was no difference in survival (70% versus 43.4%, p=0.14) or NRM (12.5% versus 31.2%respectively, p=0.24) between the FMT-MDRO group and their paired cohort. Negative outcomes, including mortality associatedwith MDRO colonization, may be ameliorated by pre-HCT FMT, despite lack of intestinal decolonization. Further work is needed toexplore the observed benefit.

Journal article

Baker LM, Davies TS, Masetti G, Hughes TR, Marchesi JR, Jack AA, Joyce TSC, Allen MD, Plummer SF, Michael DR, Ramanathan G, Del Sol R, Facey PDet al., 2021, A genome guided evaluation of the Lab4 probiotic consortium, Genomics, ISSN: 0888-7543

In this study, we present the draft genome sequences of the Lab4 probiotic consortium using whole genome sequencing. Draft genome sequences were retrieved and deposited for each of the organisms; PRJNA559984 for B. bifidum CUL20, PRJNA482335 for Lactobacillus acidophilus CUL60, PRJNA482434 for Lactobacillus acid. Probiogenomic in silico analyses confirmed existing taxonomies and identified the presence putative gene sequences that were functionally related to the performance of each organism during in vitro assessments of bile and acid tolerability, adherence to enterocytes and susceptibility to antibiotics. Predictions of genomic stability identified no significant risk of horizontal gene transfer in any of the Lab4 strains and the absence of both antibiotic resistance and virulence genes. These observations were supported by the outcomes of acute phase and repeat dose tolerability studies in Wistar rats where challenge with high doses of Lab4 did not result in any mortalities, clinical/histopathological abnormalities nor indications of systemic toxicity. Detection of increased numbers of lactobacilli and bifidobacteria in the faeces of supplemented rats implied an ability to survive transit through the gastrointestinal tract and/or impact upon the intestinal microbiota composition. In summary, this study provides in silico, in vitro and in vivo support for probiotic functionality and the safety of the Lab4 consortium.

Journal article

Totzeck A, Ramakrishnan E, Schlag M, Stolte B, Kizina K, Bolz S, Thimm A, Stettner M, Marchesi JR, Buer J, Kleinschnitz C, Verhasselt HL, Hagenacker Tet al., 2021, Gut bacterial microbiota in patients with myasthenia gravis: results from the MYBIOM study, Therapeutic Advances in Neurological Disorders, Vol: 14, Pages: 175628642110356-175628642110356, ISSN: 1756-2864

Background:Myasthenia gravis (MG) is an autoimmune neuromuscular disease, with gut microbiota considered to be a pathogenetic factor. Previous pilot studies have found differences in the gut microbiota of patients with MG and healthy individuals. To determine whether gut microbiota has a pathogenetic role in MG, we compared the gut microbiota of patients with MG with that of patients with non-inflammatory and inflammatory neurological disorders of the peripheral nervous system (primary endpoint) and healthy volunteers (secondary endpoint).Methods:Faecal samples were collected from patients with MG (n = 41), non-inflammatory neurological disorder (NIND, n = 18), chronic inflammatory demyelinating polyradiculoneuropathy (CIDP, n = 6) and healthy volunteers (n = 12). DNA was isolated from these samples, and the variable regions of the 16S rRNA gene were sequenced and statistically analysed.Results:No differences were found in alpha- and beta-diversity indices computed between the MG, NIND and CIDP groups, indicating an unaltered bacterial diversity and structure of the microbial community. However, the alpha-diversity indices, namely Shannon, Chao 1 and abundance-based coverage estimators, were significantly reduced between the MG group and healthy volunteers. Deltaproteobacteria and Faecalibacterium were abundant within the faecal microbiota of patients with MG compared with controls with non-inflammatory diseases.Conclusion:Although the overall diversity and structure of the gut microbiota did not differ between the MG, NIND and CIDP groups, the significant difference in the abundance of Deltaproteobacteria and Faecalibacterium supports the possible role of gut microbiota as a contributor to pathogenesis of MG. Further studies are needed to confirm these findings and to develop possible treatment strategies.

Journal article

Ferreira MR, Sands CJ, Li JV, Andreyev JN, Chekmeneva E, Gulliford S, Marchesi J, Lewis MR, Dearnaley DPet al., 2021, Impact of Pelvic Radiation Therapy for Prostate Cancer on Global Metabolic Profiles and Microbiota-Driven Gastrointestinal Late Side Effects: A Longitudinal Observational Study., Int J Radiat Oncol Biol Phys

PURPOSE: Radiation therapy to the prostate and pelvic lymph nodes (PLNRT) is part of the curative treatment of high-risk prostate cancer. Yet, the broader influence of radiation therapy on patient physiology is poorly understood. We conducted comprehensive global metabolomic profiling of urine, plasma, and stools sampled from patients undergoing PLNRT for high-risk prostate cancer. METHODS AND MATERIALS: Samples were taken from 32 patients at 6 timepoints: baseline, 2 to 3 and 4 to 5 weeks of PLNRT; and 3, 6, and 12 months after PLNRT. We characterized the global metabolome of urine and plasma using 1H nuclear magnetic resonance spectroscopy and ultraperformance liquid chromatography-mass spectrometry, and of stools with nuclear magnetic resonance. Linear mixed-effects modeling was used to investigate metabolic changes between timepoints for each biofluid and assay and determine metabolites of interest. RESULTS: Metabolites in urine, plasma and stools changed significantly after PLNRT initiation. Metabolic profiles did not return to baseline up to 1 year post-PLNRT in any biofluid. Molecules associated with cardiovascular risk were increased in plasma. Pre-PLNRT fecal butyrate levels directly associated with increasing gastrointestinal side effects, as did a sharper fall in those levels during and up to 1 year postradiation therapy, mirroring our previous results with metataxonomics. CONCLUSIONS: We showed for the first time that an overall metabolic effect is observed in patients undergoing PLNRT up to 1 year posttreatment. These metabolic changes may effect on long-term morbidity after treatment, which warrants further investigation.

Journal article

Monaghan TM, Biswas RN, Nashine RR, Joshi SS, Mullish BH, Seekatz AM, Miguens Blanco J, McDonald JAK, Marchesi JR, Yau TO, Christodoulou N, Hatziapostolou M, Pučić-Baković M, Vučković F, Klicek F, Lauc G, Xue N, Dottorini T, Ambalkar S, Satav A, Polytarchou C, Acharjee A, Kashyap RSet al., 2021, Multiomics profiling reveals signatures of dysmetabolism in urban populations in central India, Microorganisms, Vol: 9, Pages: 1-21, ISSN: 2076-2607

Background: Non-communicable diseases (NCDs) have become a major cause of morbidity and mortality in India. Perturbation of host–microbiome interactions may be a key mechanism by which lifestyle-related risk factors such as tobacco use, alcohol consumption, and physical inactivity may influence metabolic health. There is an urgent need to identify relevant dysmetabolic traits for predicting risk of metabolic disorders, such as diabetes, among susceptible Asian Indians where NCDs are a growing epidemic. Methods: Here, we report the first in-depth phenotypic study in which we prospectively enrolled 218 adults from urban and rural areas of Central India and used multiomic profiling to identify relationships between microbial taxa and circulating biomarkers of cardiometabolic risk. Assays included fecal microbiota analysis by 16S ribosomal RNA gene amplicon sequencing, quantification of serum short chain fatty acids by gas chromatography-mass spectrometry, and multiplex assaying of serum diabetic proteins, cytokines, chemokines, and multi-isotype antibodies. Sera was also analysed for N-glycans and immunoglobulin G Fc N-glycopeptides. Results: Multiple hallmarks of dysmetabolism were identified in urbanites and young overweight adults, the majority of whom did not have a known diagnosis of diabetes. Association analyses revealed several host–microbe and metabolic associations. Conclusions: Host–microbe and metabolic interactions are differentially shaped by body weight and geographic status in Central Indians. Further exploration of these links may help create a molecular-level map for estimating risk of developing metabolic disorders and designing early interventions.

Journal article

Li J, 2021, Roux-en-Y Gastric bypass-induced bacterial perturbation contributes to altered host-bacterial co-metabolic phenotype, Microbiome, Vol: 9, ISSN: 2049-2618

BACKGROUND: Bariatric surgery, used to achieve effective weight loss in individuals with severe obesity, modifies the gut microbiota and systemic metabolism in both humans and animal models. The aim of the current study was to understand better the metabolic functions of the altered gut microbiome by conducting deep phenotyping of bariatric surgery patients and bacterial culturing to investigate causality of the metabolic observations. METHODS: Three bariatric cohorts (n = 84, n = 14 and n = 9) with patients who had undergone Roux-en-Y gastric bypass (RYGB), sleeve gastrectomy (SG) or laparoscopic gastric banding (LGB), respectively, were enrolled. Metabolic and 16S rRNA bacterial profiles were compared between pre- and post-surgery. Faeces from RYGB patients and bacterial isolates were cultured to experimentally associate the observed metabolic changes in biofluids with the altered gut microbiome. RESULTS: Compared to SG and LGB, RYGB induced the greatest weight loss and most profound metabolic and bacterial changes. RYGB patients showed increased aromatic amino acids-based host-bacterial co-metabolism, resulting in increased urinary excretion of 4-hydroxyphenylacetate, phenylacetylglutamine, 4-cresyl sulphate and indoxyl sulphate, and increased faecal excretion of tyramine and phenylacetate. Bacterial degradation of choline was increased as evidenced by altered urinary trimethylamine-N-oxide and dimethylamine excretion and faecal concentrations of dimethylamine. RYGB patients' bacteria had a greater capacity to produce tyramine from tyrosine, phenylalanine to phenylacetate and tryptophan to indole and tryptamine, compared to the microbiota from non-surgery, normal weight individuals. 3-Hydroxydicarboxylic acid metabolism and urinary excretion of primary bile acids, serum BCAAs and dimethyl sulfone were also perturbed following bariatric surgery. CONCLUSION: Altered bacterial composition and metabolism contribute to metabolic observations in biofluid

Journal article

Mullish BH, Ghani R, McDonald JAK, Davies F, Marchesi JRet al., 2021, Reply to Woodworth, et al, Clinical Infectious Diseases, Vol: 72, Pages: e924-e925, ISSN: 1058-4838

Journal article

Raglan O, MacIntyre D, Mitra A, Lee YS, Smith A, Assi N, Nautiyal J, Purkayastha S, Gunter MJ, Gabra H, Marchesi JR, Bennett P, Kyrgiou Met al., 2021, The association between obesity and weight loss after bariatric surgery on the vaginal microbiota, Microbiome, Vol: 9, Pages: 1-17, ISSN: 2049-2618

Background: Obesity and vaginal microbiome (VMB) dysbiosis are each risk factors for adverse reproductive and oncological health outcomes in women. Here we investigated the relationship between obesity, vaginal bacterial composition, local inflammation and bariatric surgery.Methods: Vaginal bacterial composition assessed by high-throughput sequencing of bacterial 16S rRNA genes and local cytokine levels measured using a multiplexed Magnetic Luminex Screening Assay were compared between 67 obese and 42 non-obese women. We further assessed temporal changes in the microbiota and cytokines in a subset of 27 women who underwent bariatric surgery. Results: The bacterial component of the vaginal microbiota in obese women was characterised by a lower prevalence of a Lactobacillus-dominant VMB and higher prevalence of a high diversity (Lactobacillus spp., and Gardnerella- spp. depleted) VMB, compared with non-obese subjects (p<0.001). Obese women had higher relative abundance of Dialister species (p<0.001), Anaerococcus vaginalis (p=0.021) and Prevotella timonensis (p=0.020) and decreased relative abundance of Lactobacillus crispatus (p=0.014). Local vaginal IL-1β, IL-4, IL-6, IL-8, IFNγ, MIP-1α, and TNFα levels were all higher among obese women, however only IL-1β and IL-8 correlated with VMB species diversity. In a subset of obese women undergoing bariatric surgery, there were no significant overall differences in VMB following surgery, however 75% of these women remained obese at six months. Prior to surgery there was no relationship between body mass index (BMI) and VMB structure, however post-surgery women with a Lactobacillus-dominant VMB had a significantly lower BMI than those with a high diversity VMB.Conclusions: Obese women have a significantly different vaginal microbiota composition with increased levels of local inflammation compared to non-obese women. Bariatric surgery does not change the VMB, however, those with the greatest

Journal article

O'Sullivan DM, Doyle RM, Temisak S, Redshaw N, Whale AS, Logan G, Huang J, Fischer N, Amos GCA, Preston MD, Marchesi JR, Wagner J, Parkhill J, Motro Y, Denise H, Finn RD, Harris KA, Kay GL, O'Grady J, Ransom-Jones E, Wu H, Laing E, Studholme DJ, Benavente ED, Phelan J, Clark TG, Moran-Gilad J, Huggett JFet al., 2021, An inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities, Scientific Reports, Vol: 11, ISSN: 2045-2322

Despite the advent of whole genome metagenomics, targeted approaches (such as 16S rRNA gene amplicon sequencing) continue to be valuable for determining the microbial composition of samples. Amplicon microbiome sequencing can be performed on clinical samples from a normally sterile site to determine the aetiology of an infection (usually single pathogen identification) or samples from more complex niches such as human mucosa or environmental samples where multiple microorganisms need to be identified. The methodologies are frequently applied to determine both presence of micro-organisms and their quantity or relative abundance. There are a number of technical steps required to perform microbial community profiling, many of which may have appreciable precision and bias that impacts final results. In order for these methods to be applied with the greatest accuracy, comparative studies across different laboratories are warranted. In this study we explored the impact of the bioinformatic approaches taken in different laboratories on microbiome assessment using 16S rRNA gene amplicon sequencing results. Data were generated from two mock microbial community samples which were amplified using primer sets spanning five different variable regions of 16S rRNA genes. The PCR-sequencing analysis included three technical repeats of the process to determine the repeatability of their methods. Thirteen laboratories participated in the study, and each analysed the same FASTQ files using their choice of pipeline. This study captured the methods used and the resulting sequence annotation and relative abundance output from bioinformatic analyses. Results were compared to digital PCR assessment of the absolute abundance of each target representing each organism in the mock microbial community samples and also to analyses of shotgun metagenome sequence data. This ring trial demonstrates that the choice of bioinformatic analysis pipeline alone can result in different estimations of the c

Journal article

Miguens Blanco J, Liu Z, Mullish BH, Danckert NP, Alexander JL, Chrysostomou D, Sengupta R, McHugh N, McDonald JAK, Abraham SM, Marchesi JRet al., 2021, A Phenomic Characterization of the Gut Microbiota - Associations with Psoriatic Arthritis and Ankylosing Spondylitis, World Microbe Forum

Conference paper

Barker GF, Pechlivanis A, Bello AT, Chrysostomou D, Mullish BH, Marchesi J, Posma JM, Kinross JM, Nicholson J, O'Keefe SJ, Li JVet al., 2021, Aa022 a high-fiber low-fat diet increases fecal levels of lithocholic acid derivative 3-ketocholanic acid, Digestive Disease Week, Publisher: W B SAUNDERS CO-ELSEVIER INC, Pages: S393-S394, ISSN: 0016-5085

Conference paper

Radhakrishnan ST, Mullish BH, Gallagher K, Alexander JL, Danckert NP, Blanco JM, Serrano-Contreras JI, Valdivia-Garcia M, Hopkins BJ, Ghai A, Li JV, Marchesi J, Williams HRet al., 2021, RECTAL SWABS AS A VIABLE ALTERNATIVE TO FECAL SAMPLING FOR THE ANALYSIS OF GUT MICROBIOME FUNCTIONALITY AS WELL AS COMPOSITION, Publisher: W B SAUNDERS CO-ELSEVIER INC, Pages: S733-S733, ISSN: 0016-5085

Conference paper

Allegretti JR, Mullish BH, Marchesi J, Kennedy K, Gerber G, Bry Let al., 2021, ASSOCIATION BETWEEN NOVEL METABOLOMIC BIOMARKERS AND C.DIFFICILE RECURRENCE, Publisher: W B SAUNDERS CO-ELSEVIER INC, Pages: S369-S369, ISSN: 0016-5085

Conference paper

Mullish BH, Marchesi J, Pass DA, Michael D, Plummer S, Wang Det al., 2021, DAILY PROBIOTIC USE IS ASSOCIATED WITH A REDUCED RATE OF UPPER RESPIRATORY TRACT SYMPTOMS IN OVERWEIGHT AND OBESE PEOPLE, Publisher: W B SAUNDERS CO-ELSEVIER INC, Pages: S150-S150, ISSN: 0016-5085

Conference paper

Mullish BH, Innes AJ, Ghani R, Szydlo R, Williams HR, Thursz MR, Marchesi J, Davies F, Pavlu Jet al., 2021, FECAL MICROBIOTA TRANSPLANT PRIOR TO ALLOGENEIC HEMATOPOIETIC CELL TRANSPLANT IN PATIENTS COLONIZED WITH MULTI-DRUG RESISTANT ORGANISMS IS ASSOCIATED WITH IMPROVED SURVIVAL, Publisher: W B SAUNDERS CO-ELSEVIER INC, Pages: S168-S169, ISSN: 0016-5085

Conference paper

Martinez-Gili L, Mullish BH, Correia G, Chekmeneva E, Homeffer-Van Der Sluis V, McClure EL, Marchesi J, Gerber G, Bry L, Allegretti JRet al., 2021, A DISTINCTIVE SIGNATURE OF FECAL BILE ACIDS AND OTHER NOVEL METABOLITES ACCOMPANYING RECURRENCE AFTER PRIMARY CLOSTRIDIOIDES DIFFICILE INFECTION, Publisher: W B SAUNDERS CO-ELSEVIER INC, Pages: S368-S368, ISSN: 0016-5085

Conference paper

Ghani R, Mullish BH, McDonald JAK, Ghazy A, Williams HRT, Brannigan ET, Mookerjee S, Satta G, Gilchrist M, Duncan N, Corbett R, Innes AJ, Pavlu J, Thursz MR, Davies F, Marchesi JRet al., 2021, Disease prevention not decolonization – a model for fecal microbiota transplantation in patients colonized with multidrug-resistant organisms, Clinical Infectious Diseases, Vol: 72, Pages: 1444-1447, ISSN: 1058-4838

Fecal microbiota transplantation (FMT) yields variable intestinal decolonization results for multidrug-resistant organisms (MDROs). This study showed significant reductions in antibiotic duration, bacteremia and length of stay in 20 patients colonized/ infected with MDRO receiving FMT (compared to pre-FMT history, and a matched group not receiving FMT), despite modest decolonization rates.

Journal article

Edwards L, Woodhouse C, Mullish BH, Tranah T, Miguens Blanco J, Kronsten VT, Zamalloa A, Patel VC, Marchesi J, Goldenberg S, Shawcross DLet al., 2021, Faecal microbiota transplantation improves intestinal barrier function and modulates mucosal IL-17 immunity in patients with advanced cirrhosis, ILC 2021, Publisher: Elsevier, Pages: S220-S221, ISSN: 0168-8278

Conference paper

Mullish BH, Marchesi JR, McDonald JAK, Pass DA, Masetti G, Michael DR, Plummer S, Jack AA, Davies TS, Hughes TR, Wang Det al., 2021, Probiotics reduce self-reported symptoms of upper respiratory tract infection in overweight and obese adults: should we be considering probiotics during viral pandemics?, Gut Microbes, Vol: 13, Pages: 1-9, ISSN: 1949-0976

Gut microbiome manipulation to alter the gut-lung axis may potentially protect humans against respiratory infections, and clinical trials of probiotics show promise in this regard in healthy adults and children. However, comparable studies are lacking in overweight/obese people, who have increased risks in particular of viral upper respiratory tract infections (URTI). This Addendum further analyses our recent placebo-controlled trial of probiotics in overweight/obese people (focused initially on weight loss) to investigate the impact of probiotics upon the occurrence of URTI symptoms. As well as undergoing loss of weight and improvement in certain metabolic parameters, study participants taking probiotics experienced a 27% reduction in URTI symptoms versus control, with those ≥45 years or BMI ≥30 kg/m2 experiencing greater reductions. This symptom reduction is apparent within 2 weeks of probiotic use. Gut microbiome diversity remained stable throughout the study in probiotic-treated participants. Our data provide support for further trials to assess the potential role of probiotics in preventing viral URTI (and possibly also COVID-19), particularly in overweight/obese people.

Journal article

Ghani R, Mullish B, Innes A, Szydlo RM, Apperley JF, Olavarria E, Palanicawandar R, Kanfer E, Milojkovic D, McDonald JAK, Brannigan E, Thursz MR, Williams HRT, Davies FJ, Pavlu J, Marchesi Jet al., 2021, Faecal microbiota transplant (FMT) prior to allogeneic haematopoietic cell transplantation (HCT) in patients colonised with multidrug-resistant organisms (MDRO) results in improved survival, ECCMID

Conference paper

Moshkelgosha S, Verhasselt HL, Masetti G, Covelli D, Biscarini F, Horstmann M, Daser A, Westendorf AM, Jesenek C, Philipp S, Diaz-Cano S, Banga JP, Michael D, Plummer S, Marchesi JR, Eckstein A, Ludgate M, Berchner-Pfannschmidt U, INDIGO consortiumet al., 2021, Modulating gut microbiota in a mouse model of Graves' orbitopathy and its impact on induced disease, Microbiome, Vol: 9, ISSN: 2049-2618

BACKGROUND: Graves' disease (GD) is an autoimmune condition in which autoantibodies to the thyrotropin receptor (TSHR) cause hyperthyroidism. About 50% of GD patients also have Graves' orbitopathy (GO), an intractable disease in which expansion of the orbital contents causes diplopia, proptosis and even blindness. Murine models of GD/GO, developed in different centres, demonstrated significant variation in gut microbiota composition which correlated with TSHR-induced disease heterogeneity. To investigate whether correlation indicates causation, we modified the gut microbiota to determine whether it has a role in thyroid autoimmunity. Female BALB/c mice were treated with either vancomycin, probiotic bacteria, human fecal material transfer (hFMT) from patients with severe GO or ddH2O from birth to immunization with TSHR-A subunit or beta-galactosidase (βgal; age ~ 6 weeks). Incidence and severity of GD (TSHR autoantibodies, thyroid histology, thyroxine level) and GO (orbital fat and muscle histology), lymphocyte phenotype, cytokine profile and gut microbiota were analysed at sacrifice (~ 22 weeks). RESULTS: In ddH2O-TSHR mice, 84% had pathological autoantibodies, 67% elevated thyroxine, 77% hyperplastic thyroids and 70% orbital pathology. Firmicutes were increased, and Bacteroidetes reduced relative to ddH2O-βgal; CCL5 was increased. The random forest algorithm at the genus level predicted vancomycin treatment with 100% accuracy but 74% and 70% for hFMT and probiotic, respectively. Vancomycin significantly reduced gut microbiota richness and diversity compared with all other groups; the incidence and severity of both GD and GO also decreased; reduced orbital pathology correlated positively with Akkermansia spp. whilst IL-4 levels increased. Mice receiving hFMT initially inherited their GO donors' microbiota, and the severity of induced GD increased, as did the orbital brown adipose tissue volume in TSHR mice. Furthermore

Journal article

Short C-E, Brown R, Quinlan R, Lee Y, Smith A, Marchesi J, Shattock R, Bennett P, Taylor G, MacIntyre Det al., 2021, Lactobacillus-depleted vaginal microbiota in pregnant women living with HIV-1 infection are associated with increased local inflammation and preterm birth, Frontiers in Cellular and Infection Microbiology, Vol: 10, ISSN: 2235-2988

Background: Pregnant women living with HIV-1 infection (PWLWH) have an elevated risk of preterm birth (PTB) of unknown aetiology, which remains after successful suppression of HIV. Women at high risk for HIV have a common bacterial profile which has been associated with poor birth outcomes. We set out to explore factors associated with gestational age at delivery of PWLWH in a UK population.Methods: Prospective study of PWLWH (n = 53) in whom the vaginal microbiota and cervicovaginal cytokine milieu were assessed using metataxonomics and multiplexed immunoassays, respectively. Cross-sectional characterisation of vaginal microbiota in PWLWH were compared with 22 HIV uninfected pregnant women (HUPW) at a similar second trimester timepoint. Within PWLWH the relationships between bacterial composition, inflammatory response, and gestational age at delivery were explored.Findings: There was a high rate of PTB among PWLWH (12%). In the second trimester the vaginal microbiota was more diverse in PWLWH than in HUPW (Inverse Simpson Index, p = 0.0004 and Species Observed, p = 0.009). PWLWH had a lower prevalence of L. crispatus dominant vaginal microbiota group (VMB I, 15 vs 54%) than HUPW and higher prevalence of L. iners dominant (VMB III, 36 vs 9% and VMB IIIB, 15 vs 5%) and mixed anaerobes (VMB IV, 21 vs 0%). Across the second and third trimesters in PWLWH, VMB III/IIIB and IV were associated with PTB and with increased local inflammation [cervicovaginal fluid (CVF) cytokine concentrations in upper quartile]. High bacterial diversity and anaerobic bacterial abundance were also associated with CVF pro-inflammatory cytokines, most notably IL-1β.Interpretation: There is an association between local inflammation, vaginal dysbiosis and PTB in PWLWH. Understanding the potential of antiretroviral therapies to influence this cascade will be important to improve birth outcomes in this population.

Journal article

Seyfried F, Phetcharaburanin J, Glymenaki M, Nordbeck A, Hankir M, Nicholson J, Holmes E, Marchesi J, Li Jet al., 2021, Roux-en-Y gastric bypass surgery in Zucker rats induces bacterial and systemic metabolic changes independent of caloric restriction-induced weight loss, Gut Microbes, Vol: 13, Pages: 1-20, ISSN: 1949-0976

Mechanisms of Roux-en-Y gastric bypass (RYGB) surgery are not fully understood. This study aimed to investigate weight loss-independent bacterial and metabolic changes, as well as the absorption of bacterial metabolites and bile acids through the hepatic portal system following RYGB surgery. Three groups of obese Zucker (fa/fa) rats were included: RYGB (n = 11), sham surgery and body weight matched with RYGB (Sham-BWM, n = 5), and sham surgery fed ad libitum (Sham-obese, n = 5). Urine and feces were collected at multiple time points, with portal vein and peripheral blood obtained at the end of the study. Metabolic phenotyping approaches and 16S rRNA gene sequencing were used to determine the biochemical and bacterial composition of the samples, respectively. RYGB surgery-induced distinct metabolic and bacterial disturbances, which were independent of weight loss through caloric restriction. RYGB resulted in lower absorption of phenylalanine and choline, and higher urinary concentrations of host-bacterial co-metabolites (e.g., phenylacetylglycine, indoxyl sulfate), together with higher fecal trimethylamine, suggesting enhanced bacterial aromatic amino acid and choline metabolism. Short chain fatty acids (SCFAs) were lower in feces and portal vein blood from RYGB group compared to Sham-BWM, accompanied with lower abundances of Lactobacillaceae, and Ruminococcaceae known to contain SCFA producers, indicating reduced bacterial fiber fermentation. Fecal γ-amino butyric acid (GABA) was found in higher concentrations in RYGB than that in Sham groups and could play a role in the metabolic benefits associated with RYGB surgery. While no significant difference in urinary BA excretion, RYGB lowered both portal vein and circulating BA compared to Sham groups. These findings provide a valuable resource for how dynamic, multi-systems changes impact on overall metabolic health, and may provide potential therapeutic targets for developing downstream non-surgical treatment for

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00535975&limit=30&person=true