Imperial College London


Faculty of EngineeringDepartment of Computing

Professor of Computer Systems



+44 (0)20 7594 8375j.mccann Website




258ACE ExtensionSouth Kensington Campus






BibTex format

author = {Fu, A and Tomic, I and McCann, J},
publisher = {IEEE},
title = {Asynchronous sampling for decentralized periodic event-triggered control},
url = {},

RIS format (EndNote, RefMan)

AB - Decentralized periodic event-triggered control(DPETC) strategies are an attractive solution for wireless cyber-physical systems where resources such as network bandwidthand sensor power are scarce. This is because these strategieshave the advantage of preventing unnecessary data transmis-sions and therefore reduce bandwidth and energy requirements,however the sensor sampling regime remains synchronous.Typically the action of sampling leads almost immediately toa transmission on an event being detected. If the sampling issynchronous, multiple transmission requests may be raised atthe same time which further leads to bursty traffic patterns.Bursty traffic patterns are critical to the DPETC systemsperformance as the probability of collisions and the amount ofrequested bandwidth resources become high ultimately causingdelays. In this paper, we propose an asynchronous samplingscheme for DPETC. The scheme ensures that at each samplingtime, no more than one transmission request can be generatedwhich prevents the occurrence of network traffic collision.At the same time, for the DPETC system with asynchronoussampling a pre-designed global exponential stability andL2-gain performance can still be guaranteed. We illustrate theeffectiveness of the approach through a numerical example.
AU - Fu,A
AU - Tomic,I
AU - McCann,J
TI - Asynchronous sampling for decentralized periodic event-triggered control
UR -
ER -