Imperial College London

ProfessorJulieMcCann

Faculty of EngineeringDepartment of Computing

Professor of Computer Systems
 
 
 
//

Contact

 

+44 (0)20 7594 8375j.mccann Website

 
 
//

Assistant

 

Miss Teresa Ng +44 (0)20 7594 8300

 
//

Location

 

260ACE ExtensionSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@inproceedings{Li,
author = {Li, K and Benkhelifa, F and McCann, J},
publisher = {IEEE},
title = {Resource allocation for non-orthogonal multiple access (NOMA) enabled LPWA networks},
url = {http://hdl.handle.net/10044/1/72944},
}

RIS format (EndNote, RefMan)

TY  - CPAPER
AB - In this paper, we investigate the resource allocationfor uplink non-orthogonal multiple access (NOMA) enabledlow-power wide-area (LPWA) networks to support the massiveconnectivity of users/nodes. Here, LPWA nodes communicatewith a central gateway through resource blocks like channels,transmission times, bandwidths, etc. The nodes sharing thesame resource blocks suffer from intra-cluster interference andpossibly inter-cluster interference, which makes currentLPWAnetworks unable to support the massive connectivity. Usingtheminimum transmission rate metric to highlight the interferencereduction that results from the addition of NOMA, and whileassuring user throughput fairness, we decompose the minimumrate maximization optimization problem into three sub-problems.First, a low-complexity sub-optimal nodes clustering scheme isproposed assigning nodes to channels based on their normalizedchannel gains. Then, two types of transmission time allocationalgorithms are proposed that either assure fair or unfair trans-mission time allocation between LPWA nodes sharing the samechannel. For a given channel and transmission time allocation, wefurther propose an optimal power allocation scheme. Simulationevaluations demonstrate approximately100dBimprovement ofthe selected metric for a single network with4000active nodes.
AU - Li,K
AU - Benkhelifa,F
AU - McCann,J
PB - IEEE
TI - Resource allocation for non-orthogonal multiple access (NOMA) enabled LPWA networks
UR - http://hdl.handle.net/10044/1/72944
ER -