Imperial College London

Mr Joshua N. Rasera

Faculty of EngineeringDepartment of Earth Science & Engineering

Research Assistant







Royal School of MinesSouth Kensington Campus





Publication Type

4 results found

Rasera J, Cilliers J, Lamamy J-A, Hadler Ket al., 2020, The beneficiation of lunar regolith for space resource utilisation: A review, Planetary and Space Science, Vol: 186, ISSN: 0032-0633

Space Resource Utilisation (SRU) technology will enable further exploration and habitation of space by humankind. The production of oxygen on the Moon is one of the first objectives for SRU; this can be achieved through the thermo-chemical reduction of the lunar regolith. Several techniques, such as hydrogen reduction and molten salt electrolysis, have been proposed. All reduction techniques require a consistent feedstock from the regolith to reliably and consistently produce oxygen. The preparation of this feedstock, known as beneficiation, is a critical intermediate stage of the SRU flowsheet, however it has received little consideration relative to the preceding excavation, and the subsequent oxygen production stage. This review describes the physics of the main beneficiation methods suitable for SRU. Further, we collate and review all of the previous studies on the beneficiation of lunar regolith.

Journal article

Hadler K, Martin DJP, Carpenter J, Cilliers JJ, Morse A, Starr S, Rasera JN, Seweryn K, Reiss P, Meurisse Aet al., 2020, A universal framework for Space Resource Utilisation (SRU), Planetary and Space Science, Vol: 182, Pages: 1-5, ISSN: 0032-0633

Space Resource Utilisation (SRU) or In Situ Resource Utilisation (ISRU) is the use of natural resources from the Moon, Mars and other bodies for use in situ or elsewhere in the Solar System. The implementation of SRU technologies will provide the breakthrough for humankind to explore further into space. A range of extraction processes to produce useable resources have been proposed, such as oxygen production from lunar regolith, extraction of lunar ice and construction of habitation by 3D printing. Practical and successful implementation of SRU requires that all the stages of the process flowsheet (excavation, beneficiation and extraction) are considered. This requires a complete ‘mine-to-market’ type approach, analogous to that of terrestrial mineral extraction.One of the key challenges is the unique cross-disciplinary nature of SRU; it integrates space systems, robotics, materials handling and beneficiation, and chemical process engineering. This is underpinned by knowledge of the lunar or planetary geology, including mineralogy, physical characteristics, and the variability in local materials. Combining such diverse fields in a coordinated way requires the use of a universal framework. The framework will enable integration of operations and comparison of technologies, and will define a global terminology to be used across all fields. In this paper, a universal SRU flowsheet and terminology are described, and a matrix approach to describing regolith characteristics specifically for SRU is proposed. This is the first time that such an approach has been taken to unify this rapidly-developing sector.

Journal article

Cilliers J, Hadler K, Rasera J, 2020, Estimating the scale of Space Resource Utilisation (SRU) operations to satisfy lunar oxygen demand, Planetary and Space Science, Vol: 180, Pages: 1-8, ISSN: 0032-0633

The production of oxygen from lunar regolith is analogous to metal production from ore in a terrestrial mine. The process flowsheets both include excavation, haulage and beneficiation of the regolith or ore to provide the feedstock for the chemical extraction of oxygen or metal. The production rate of oxygen depends on the mass rate of regolith treated and the efficiency of converting the regolith to oxygen. To date, the development of Space Resource Utilisation (SRU) has been concerned with the technological development of the process, particularly the excavation and oxygen extraction. However, the required operating mass rates of the mine operation and the oxygen extraction stage have not been considered in any great detail.Previous estimates of mining scale for lunar oxygen production are reviewed, and converted to a comparable regolith mining rate of kg/h. Beneficiation of the regolith before oxygen extraction is considered, and the effects of pre-sizing and removal of a specific component, agglutinates, are considered. The oxygen yield and operational availability are also included. It is estimated that the minimum mining rate to produce 1000 kg of oxygen per annum is at least five times higher than previous estimates, 30 kg/h, for equivalent efficiency assumptions.Monte-Carlo simulations were performed for statistical confidence in the estimates of the mining mass rate and the required oxygen extraction feedstock rate. To be 95% confident that the 1000 kg/y O2 will be met, the designed mining rate should be at least 65 kg/h, and the beneficiated feedstock rate 16 kg/h.This study has revised and increased the estimate of the lunar regolith mining scale required for the production of a given amount of oxygen. It has also estimated the mass rate of feedstock required for oxygen extraction, if the regolith is first beneficiated.The findings have a significant impact on the practical implementation of lunar mining and oxygen extraction, particularly the process des

Journal article

Rasera JN, Cilliers JJ, Lamamy JA, Hadler Ket al., 2019, The beneficiation of lunar regolith using electrostatic separation for space resource utilisation, 70th International Astronautical Congress, ISSN: 0074-1795

Copyright © 2019 by the International Astronautical Federation (IAF). All rights reserved. Differences in the electrostatic properties of materials can be exploited for both the sizing and enrichment of minerals. In this study, the motion of silica particles falling through an electrostatic field was investigated to characterise a custom free-fall electrostatic separator. The motion was affected by varying the magnitude of the electrostatic field and the spacing of the electrodes. SiLibeads (spherical silica) were sized and tribocharged in a borosilicate glass beaker and fed into the separator. Fourteen electrostatic field strengths each generated at three different electrode spacings (75 mm, 150 mm, and 225 mm) were studied. The percentage of particles reporting to each electrode was measured. Analyses of the results indicate that the expected linear increase in the field strength does not increase proportionally the amount of material reporting to each electrode, indicating that additional underlying parameters must be characterised. Further, an analysis of the variance between the measurements indicates that there are almost no significant effects on the separator's operation due to changing either the field strength or electrode spacing. However, two statistically unique operating conditions were identified. The measurements collected at a field strength of 0.04 kV/mm with a 75-mm spacing were unique relative to other field strengths at that spacing and may indicate an optimal operating condition. Further, the data collected at each electrode spacing with a constant electric field strength of 0.06 kV/mm were also found to be unique. This implies that there may be a performance dependence on electrode spacing in addition to the field strength. Further analysis and experimentation are required to draw more detailed conclusions.

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=01574298&limit=30&person=true