Imperial College London

Emeritus ProfessorJohnSeddon

Faculty of Natural SciencesDepartment of Chemistry

Senior Research Investigator
 
 
 
//

Contact

 

+44 (0)20 7594 5797j.seddon Website

 
 
//

Location

 

207EMolecular Sciences Research HubWhite City Campus

//

Summary

 

Publications

Publication Type
Year
to

220 results found

Gainar A, Tyler AII, Brooks NJ, Seddon JMet al., 2017, Understanding the lyotropic phase behaviour of cytochrome-c incorporated in monoolein mesophases, 19th IUPAB Congress / 11th EBSA Congress, Publisher: SPRINGER, Pages: S120-S120, ISSN: 0175-7571

Conference paper

Trantidou T, Friddin M, Elani Y, Brooks NJ, Law RV, Seddon JM, Ces Oet al., 2017, Engineering compartmentalized biomimetic micro- and nanocontainers, ACS Nano, Vol: 11, Pages: 6549-6565, ISSN: 1936-086X

Compartmentalization of biological content and function is a key architectural feature in biology, where membrane bound micro- and nanocompartments are used for performing a host of highly specialized and tightly regulated biological functions. The benefit of compartmentalization as a design principle is behind its ubiquity in cells and has led to it being a central engineering theme in construction of artificial cell-like systems. In this review, we discuss the attractions of designing compartmentalized membrane-bound constructs and review a range of biomimetic membrane architectures that span length scales, focusing on lipid-based structures but also addressing polymer-based and hybrid approaches. These include nested vesicles, multicompartment vesicles, large-scale vesicle networks, as well as droplet interface bilayers, and double-emulsion multiphase systems (multisomes). We outline key examples of how such structures have been functionalized with biological and synthetic machinery, for example, to manufacture and deliver drugs and metabolic compounds, to replicate intracellular signaling cascades, and to demonstrate collective behaviors as minimal tissue constructs. Particular emphasis is placed on the applications of these architectures and the state-of-the-art microfluidic engineering required to fabricate, functionalize, and precisely assemble them. Finally, we outline the future directions of these technologies and highlight how they could be applied to engineer the next generation of cell models, therapeutic agents, and microreactors, together with the diverse applications in the emerging field of bottom-up synthetic biology.

Journal article

Boyd C, Parsons ES, Smith RAG, Seddon JM, Ces O, Bubeck Det al., 2016, Disentangling the roles of cholesterol and CD59 in intermedilysin pore formation, Scientific Reports, Vol: 6, ISSN: 2045-2322

The plasma membrane provides an essential barrier, shielding a cell from the pressures of its external environment. Pore-forming proteins, deployed by both hosts and pathogens alike, breach this barrier to lyse target cells. Intermedilysin is a cholesterol-dependent cytolysin that requires the human immune receptor CD59, in addition to cholesterol, to form giant β-barrel pores in host membranes. Here we integrate biochemical assays with electron microscopy and atomic force microscopy to distinguish the roles of these two receptors in mediating structural transitions of pore formation. CD59 is required for the specific coordination of intermedilysin (ILY) monomers and for triggering collapse of an oligomeric prepore. Movement of Domain 2 with respect to Domain 3 of ILY is essential for forming a late prepore intermediate that releases CD59, while the role of cholesterol may be limited to insertion of the transmembrane segments. Together these data define a structural timeline for ILY pore formation and suggest a mechanism that is relevant to understanding other pore-forming toxins that also require CD59.

Journal article

Chan CL, Bolognesi G, Bhandarkar A, Friddin M, Brooks NJ, Seddon J, Law R, Barter L, Ceset al., 2016, DROPLAY: laser writing of functional patterns within biological microdroplet displays, Lab on a Chip, Vol: 16, Pages: 4621-4627, ISSN: 1473-0197

In this study, we introduce an optofluidic method for the rapid construction of large-area cell-sized droplet assemblieswith user-defined re-writable two-dimensional patterns of functional droplets. Light responsive water-in-oil dropletscapable of releasing fluorescent dye molecules upon exposure were generated and self-assembled into arrays in amicrofluidic device. This biological architecture was exploited by the scanning laser of a confocal microscope to ‘write’ userdefined patterns of differentiated (fluorescent) droplets in a network of originally undifferentiated (non-fluorescent)droplets. As a result, long lasting images were produced on a droplet fabric with droplets acting as pixels of a biologicalmonitor, which can be erased and re-written on-demand. Regio-specific light-induced droplet differentiation within a largepopulation of droplets provides a new paradigm for the rapid construction of bio-synthetic systems with potential as tissuemimics and biological display materials.

Journal article

Friddin MS, Bolognesi G, Elani Y, Brooks N, Law R, Seddon J, Neil M, ces Oet al., 2016, Optically assembled droplet interface bilayer (OptiDIB) networks from cell-sized microdroplets, Soft Matter, Vol: 12, Pages: 7731-7734, ISSN: 1744-6848

We report a new platform technology to systematically assemble droplet interface bilayer (DIB) networks in user-defined 3D architectures from cell-sized droplets using optical tweezers. Our OptiDIB platform is the first demonstration of optical trapping to precisely construct 3D DIB networks, paving the way for the development of a new generation of modular bio-systems.

Journal article

Friddin MS, Bolognesi G, Elani Y, Brooks N, Law R, Seddon J, Neil M, Ces Oet al., 2016, The optical assembly of bilayer networks from cell-sized droplets for synthetic biology, Systems and Synthetic Biology

Conference paper

Brooks NJ, Cates ME, Clegg PS, Lips A, Poon WCK, Seddon JMet al., 2016, Soft Interfacial Materials: from Fundamentals to Formulation, Philosophical Transactions A: Mathematical, Physical and Engineering Sciences, Vol: 374, ISSN: 1364-503X

This article is part of the themed issue ‘Soft interfacial materials: from fundamentals to formulation’.The science of soft interfaces (lipid membranes, emulsions, particle-stabilized droplets, etc.) is rapidly moving into an era of predictive capability that allows the design and development of advanced materials to be based on secure scientific knowledge. This Theme Issue reports papers presented at a Discussion Meeting intended not only to address the fundamental science, focusing on generic design principles for self-organization and interfacial structure, but also to explore the resulting prospects for ‘informed formulation’ of new and improved industrial products.At the end of this introductory essay, we briefly summarize some of the scientific progress reported in the individual research and review papers included in this volume. Before doing so, we take the opportunity to describe some of the background thinking that shaped the content and aims of the Meeting as conceived by the organizers.This essay is intended to be thought provoking, not definitive; much of it is based on a wrap-up discussion that two of us (Alex Lips and Wilson Poon) contributed at the end of the Meeting itself. In it, we focus on the relationship between science (‘fundamentals’) and technology (‘formulation’). At least in the soft materials area, this represents a subtler and more interesting form of symbiosis than is often assumed.

Journal article

Friddin MS, Bolognesi G, Elani Y, Brooks N, Law R, Seddon J, Neil M, Ces Oet al., 2016, Optical tweezers to assemble 2D and 3D droplet interface bilayer networks from cell-sized droplets, EMBL Microfluidics

Conference paper

Karamdad K, Law R, Seddon J, Brooks NJ, Ces Oet al., 2016, Studying the effects of asymmetry on the bending rigidity of lipid membranes formed by microfluidics, Chemical Communications (London), Vol: 52, Pages: 5277-5280, ISSN: 0009-241X

In this article we detail a robust high-throughput microfluidic platform capable of fabricating either symmetric or asymmetric giant unilamellar vesicles (GUVs) and characterise the mechanical properties of their membranes.

Journal article

Zhang Y, Carter JW, Lervik A, Brooks NJ, Seddon JM, Bresme Fet al., 2016, Structural organization of sterol molecules in DPPC bilayers: a coarse-grained molecular dynamics investigation, Soft Matter, Vol: 12, Pages: 2108-2117, ISSN: 1744-6848

Journal article

Martin HP, Brooks NJ, Seddon JM, Luckham PF, Terrill NJ, Kowalski AJ, Cabral JTet al., 2016, Microfluidic processing of concentrated surfactant mixtures: online SAXS, microscopy and rheology, Soft Matter, Vol: 12, Pages: 1750-1758, ISSN: 1744-6848

Journal article

Friddin MS, Bolognesi G, Elani Y, Brooks NJ, Law RV, Seddon JM, Neil MAA, Ces Oet al., 2016, Light-driven drag and drop assembly of micron-scale bilayer networks for synthetic biology, Pages: 545-546

We have developed a new method to assemble single- or multi-layered networks of droplet interface bilayers (DIBs) from cell-sized droplets using a single beam optical trap (optical tweezers). The novelty of our approach is the ability to directly trap the microdroplets with the laser and manipulate them in 3D to construct DIB networks of user-defined architectures. Our method does not require a complex optical setup, is versatile, contactless, benefits from both high spatial and temporal resolution, and could set a new paradigm for the assembly of smart, synthetic biosystems.

Conference paper

Ces O, Elani Y, Karamdad K, Friddin MS, Barter LMC, Bolognesi G, Law RV, Chan CL, Brooks NJ, Seddon JMet al., 2016, Novel microfluidic technologies for the bottom-up construction of artificial cells

This talk will outline novel microfluidic strategies for biomembrane engineering that are capable of fabricating vesicles [1], droplet interface bilayer networks [2], multisomes [3] and artificial tissues [4] where parameters such as membrane asymmetry, membrane curvature, compartment connectivity and individual compartment contents can be controlled. Various bulk methods, such as extrusion, gentle hydration and electroformation, have been synonymous with the formation of lipid vesicles over recent years. However these strategies suffer from significant shortcomings associated with these processes including limited control of vesicle structural parameters such as size, lamellarity, membrane composition and internal contents. To address this technological bottleneck we have developed novel microfluidic platforms to form lipid vesicles in high-Throughput with full control over the composition of both the inner and outer leaflet of the membrane thereby enabling the manufacture of symmetric and asymmetric vesicles. This is achieved by manufacturing microfluidic channels with a step junction, produced by double-layer photolithography, which facilitates the transfer of a W/O emulsion across an oil-water phase boundary and the self-Assembly of a phospholipid bilayer. These platforms are being used to explore the role of asymmetry in biological systems [1] and study the engineering rules that regulate membrane mediated protein-protein interactions [5]. In addition, these technologies are enabling the construction of biological machines capable of acting as micro-reactors [6], environmental sensors and smart delivery vehicles [5] as well as complex multi-compartment artificial cells where the contents and connectivity of each compartment can be controlled. These compartments are separated by biological functional membranes that can facilitate transport between the compartments themselves and between the compartments and external environment. This approach has led to the deve

Conference paper

Carreras P, Elani Y, Law RV, Brooks NJ, Seddon JM, Ces Oet al., 2015, A microfluidic platform for size-dependent generation of droplet interface bilayer networks on rails, Biomicrofluidics, Vol: 9, ISSN: 1932-1058

Dropletinterface bilayer (DIB) networks are emerging as a cornerstone technology for the bottom up construction of cell-like and tissue-like structures and bio-devices. They are an exciting and versatile model-membrane platform, seeing increasing use in the disciplines of synthetic biology, chemical biology, and membrane biophysics. DIBs are formed when lipid-coated water-in-oil droplets are brought together—oil is excluded from the interface, resulting in a bilayer. Perhaps the greatest feature of the DIB platform is the ability to generate bilayer networks by connecting multiple droplets together, which can in turn be used in applications ranging from tissue mimics, multicellular models, and bio-devices. For such applications, the construction and release of DIB networks of defined size and composition on-demand is crucial. We have developed a droplet-based microfluidic method for the generation of different sized DIB networks (300–1500 pl droplets) on-chip. We do this by employing a droplet-on-rails strategy where droplets are guided down designated paths of a chip with the aid of microfabricated grooves or “rails,” and droplets of set sizes are selectively directed to specific rails using auxiliary flows. In this way we can uniquely produce parallel bilayer networks of defined sizes. By trapping several droplets in a rail, extended DIB networks containing up to 20 sequential bilayers could be constructed. The trapped DIB arrays can be composed of different lipid types and can be released on-demand and regenerated within seconds. We show that chemical signals can be propagated across the bio-network by transplanting enzymatic reaction cascades for inter-droplet communication.

Journal article

Barriga HMG, Law RV, Seddon JM, Ces O, Brooks NJet al., 2015, The effect of hydrostatic pressure on model membrane domain composition and lateral compressibility, Physical Chemistry Chemical Physics, ISSN: 1463-9084

Phase separation in ternary model membranes is known to occur over a range of temperatures and compositions and can be induced by increasing hydrostatic pressure. We have used small angle X-ray scattering (SAXS) to study phase separation along pre-determined tie lines in dioleoylphosphatidylcholine (DOPC), dipalmitoylphosphatidylcholine (DPPC) and cholesterol (CHOL) mixtures. We can unequivocally distinguish the liquid ordered (Lo) and liquid disordered (Ld) phases in diffraction patterns from biphasic mixtures and compare their lateral compressibility. The variation of tie line endpoints with increasing hydrostatic pressure was determined, at atmospheric pressure and up to 100 MPa. We find an extension and shift of the tie lines towards the DOPC rich region of the phase diagram at increased pressure, this behaviour differs slightly from that reported for decreasing temperature.

Journal article

Yeh JS-M, Sennoga CA, McConnell E, Eckersley R, Tang M-X, Nourshargh S, Seddon JM, Haskard DO, Nihoyannopoulos Pet al., 2015, QUANTITATIVE ULTRASOUND MOLECULAR IMAGING, ULTRASOUND IN MEDICINE AND BIOLOGY, Vol: 41, Pages: 2478-2496, ISSN: 0301-5629

Journal article

Ja'afar F, Leow CH, Garbin V, Sennoga CA, Tang M-X, Seddon JMet al., 2015, Surface Charge Measurement of SonoVue, Definity and Optison: A Comparison of Laser Doppler Electrophoresis and Micro-Electrophoresis, Ultrasound in Medicine and Biology, Vol: 41, Pages: 2990-3000, ISSN: 0301-5629

Microbubble (MB) contrast-enhanced ultrasonography is a promising tool for targeted molecular imaging. It is important to determine the MB surface charge accurately as it affects the MB interactions with cell membranes. In this article, we report the surface charge measurement of SonoVue, Definity and Optison. We compare the performance of the widely used laser Doppler electrophoresis with an in-house micro-electrophoresis system. By optically tracking MB electrophoretic velocity in a microchannel, we determined the zeta potentials of MB samples. Using micro-electrophoresis, we obtained zeta potential values for SonoVue, Definity and Optison of −28.3, −4.2 and −9.5 mV, with relative standard deviations of 5%, 48% and 8%, respectively. In comparison, laser Doppler electrophoresis gave −8.7, +0.7 and +15.8 mV with relative standard deviations of 330%, 29,000% and 130%, respectively. We found that the reliability of laser Doppler electrophoresis is compromised by MB buoyancy. Micro-electrophoresis determined zeta potential values with a 10-fold improvement in relative standard deviation.

Journal article

Pommella A, Brooks NJ, Seddon JM, Garbin Vet al., 2015, Selective flow-induced vesicle rupture to sort by membrane mechanical properties, Scientific Reports, Vol: 5, ISSN: 2045-2322

Journal article

Yeh JS-M, Sennoga CA, McConnell E, Eckersley R, Tang M-X, Nourshargh S, Seddon JM, Haskard DO, Nihoyannopoulos Pet al., 2015, A targeting microbubble for ultrasound molecular imaging, PLoS ONE, Vol: 10, ISSN: 1932-6203

Journal article

Seddon JM, Brooks NJ, Ces O, Law RV, Templer RH, Tyler AI, Tang D, Conn CE, Zahid NI, Hashim Ret al., 2015, Lipid bicontinuous cubic phases: effects of chain-branching and hydrostatic pressure, 10th European-Biophysical-Societies-Association (EBSA) European Biophysics Congress, Publisher: SPRINGER, Pages: S187-S187, ISSN: 0175-7571

Conference paper

Gater D, Tyler A, Seddon JM, Law RVet al., 2015, The liquid ordered phase of cholesterol-dipalmitoylglycerol, EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, Vol: 44, Pages: S112-S112, ISSN: 0175-7571

Journal article

McCarthy NL, Ces O, Law RV, Seddon JM, Brooks NJet al., 2015, Separation of liquid domains in model membranes induced with high hydrostatic pressure, EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, Vol: 44, Pages: S115-S115, ISSN: 0175-7571

Journal article

Barriga H, Tyler A, McCarthy NL, Parsons E, Seddon JM, Law RV, Ces O, Brooks NJet al., 2015, Engineering swollen bicontinuous cubic phases and cubosomes; a new generation of artificial cells, EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, Vol: 44, Pages: S109-S109, ISSN: 0175-7571

Journal article

McCarthy NLC, Ces O, Law RV, Seddon JM, Brooks NJet al., 2015, Separation of liquid domains in model membranes induced with high hydrostatic pressure, Chemical Communications, Vol: 51, Pages: 8675-8678, ISSN: 1364-548X

We have imaged the formation of membrane microdomains immediately after their induction using a novel technology platform coupling high hydrostatic pressure to fluorescence microscopy. After formation, the ordered domains are small and highly dynamic. This will enhance links between model lipid assemblies and dynamic processes in cellular membranes.

Journal article

Tang T-YD, Brooks NJ, Ces O, Seddon JM, Templer RHet al., 2015, Structural studies of the lamellar to bicontinuous gyroid cubic (Q<sub>II</sub><SUP>G</SUP>) phase transitions under limited hydration conditions, SOFT MATTER, Vol: 11, Pages: 1991-1997, ISSN: 1744-683X

Journal article

Tyler AII, Barriga HMG, Parsons ES, McCarthy, Ces, Law RV, Seddon JM, Brooks NJet al., 2015, Electrostatic swelling of bicontinuous cubic lipid phases, Soft Matter, Vol: 11, Pages: 3279-3286, ISSN: 1744-6848

Lipid bicontinuous cubic phases have attracted enormous interest as bio-compatible scaffolds for use in a wide range of applications including membrane protein crystallisation, drug delivery and biosensing. One of the major bottlenecks that has hindered exploitation of these structures is an inability to create targeted highly swollen bicontinuous cubic structures with large and tunable pore sizes. In contrast, cubic structures found in-vivo have periodicities approaching the micron scale. We have been able to engineer and control highly swollen bicontinuous cubic phases of spacegroup Im3m containing only lipids by a) increasing the bilayer stiffness by adding cholesterol and b) inducing electrostatic repulsion across the water channels by addition of anionic lipids to monoolein. By controlling the composition of the ternary mixtures we have been able to achieve lattice parameters up to 470 Å, which is 5 times that observed in pure monoolein and nearly twice the size of any lipidic cubic phase reported previously. These lattice parameters significantly exceed the predicted maximum swelling for bicontinuous cubic lipid structures, which suggest that thermal fluctuations should destroy such phases for lattice parameters larger than 300 Å.

Journal article

Barriga HMG, Parsons ES, McCarthy NLC, Ces O, Seddon JM, Law RV, Brooks NJet al., 2015, Pressure-Temperature Phase Behavior of Mixtures of Natural Sphingomyelin and Ceramide Extracts, Langmuir, Vol: 31, Pages: 3678-3686, ISSN: 1520-5827

Journal article

Barriga HMG, Tyler AII, McCarthy NLC, Parsons ES, Ces O, Law RV, Seddon JM, Brooks NJet al., 2015, Temperature and pressure tuneable swollen bicontinuous cubic phases approaching nature's length scales, Soft Matter, Vol: 11, Pages: 600-607, ISSN: 1744-683X

Bicontinuous cubic structures offer enormous potential in applications ranging from protein crystallisation to drug delivery systems and have been observed in cellular membrane structures. One of the current bottlenecks in understanding and exploiting these structures is that cubic scaffolds produced in vitro are considerably smaller in size than those observed in biological systems, differing by almost an order of magnitude in some cases. We have addressed this technological bottleneck and developed a methodology capable of manufacturing highly swollen bicontinuous cubic membranes with length scales approaching those seen in vivo. Crucially, these cubic systems do not require the presence of proteins. We have generated highly swollen Im3m symmetry bicontinuous cubic phases with lattice parameters of up to 480 Å, composed of ternary mixtures of monoolein, cholesterol and negatively charged lipid (DOPS or DOPG) and we have been able to tune their lattice parameters. The swollen cubic phases are highly sensitive to both temperature and pressure; these structural changes are likely to be controlled by a fine balance between lipid headgroup repulsions and lateral pressure in the hydrocarbon chain region.

Journal article

Zhang Y, Lervik A, Seddon J, Bresme Fet al., 2015, A coarse-grained molecular dynamics investigation of the phase behavior of DPPC/cholesterol mixtures, CHEMISTRY AND PHYSICS OF LIPIDS, Vol: 185, Pages: 88-98, ISSN: 0009-3084

Journal article

Tyler AII, Law RV, Seddon JM, 2015, X-Ray Diffraction of Lipid Model Membranes, METHODS IN MEMBRANE LIPIDS, SECOND EDITION, Vol: 1232, Pages: 199-225, ISSN: 1064-3745

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: limit=30&id=00007243&person=true&page=2&respub-action=search.html