Imperial College London

DrJonathanSwann

Faculty of MedicineDepartment of Metabolism, Digestion and Reproduction

Visiting Professor
 
 
 
//

Contact

 

+44 (0)20 7594 0728j.swann

 
 
//

Location

 

660Sir Alexander Fleming BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

157 results found

Letertre MPM, Munjoma NC, Wolfer K, Pechlivanis A, McDonald J, Hardwick RN, Cherrington NJ, Coen M, Nicholson J, Hoyles L, Swann J, Wilson Iet al., 2020, A two-way interaction between methotrexate and the gut microbiota of male Sprague Dawley rats, Journal of Proteome Research, Vol: 19, Pages: 3326-3339, ISSN: 1535-3893

Methotrexate (MTX) is a chemotherapeutic agent that cancause a range of toxic side effects including gastrointestinal damage,hepatotoxicity, myelosuppression, and nephrotoxicity and has potentiallycomplex interactions with the gut microbiome. Following untargeted UPLCqtof-MS analysis of urine and fecal samples from male Sprague−Dawley ratsadministered at either 0, 10, 40, or 100 mg/kg of MTX, dose-dependentchanges in the endogenous metabolite profiles were detected. Semiquantitativetargeted UPLC-MS detected MTX excreted in urine as well as MTX and twometabolites, 2,4-diamino-N-10-methylpteroic acid (DAMPA) and 7-hydroxyMTX, in the feces. DAMPA is produced by the bacterial enzymecarboxypeptidase glutamate 2 (CPDG2) in the gut. Microbiota profiling(16S rRNA gene amplicon sequencing) of fecal samples showed an increase inthe relative abundance of Firmicutes over the Bacteroidetes at low doses ofMTX but the reverse at high doses. Firmicutes relative abundance was positively correlated with DAMPA excretion in feces at 48 h,which were both lower at 100 mg/kg compared to that seen at 40 mg/kg. Overall, chronic exposure to MTX appears to inducecommunity and functionality changes in the intestinal microbiota, inducing downstream perturbations in CPDG2 activity, and thusmay delay MTX detoxication to DAMPA. This reduction in metabolic clearance might be associated with increased gastrointestinaltoxicity.

Journal article

Walker JM, Garcet S, Aleman JO, Mason CE, Danko D, Zuffa S, Swann JR, Krueger J, Breslow JL, Holt PRet al., 2020, Obesity and Race Alter Gene Expression in Skin

<jats:title>ABSTRACT</jats:title><jats:p>Obesity is accompanied by dysfunction of many organs, but effects on the skin have received little attention. We studied differences in epithelial thickness by histology and gene expression by Affymetrix gene arrays and PCR in the skin of 10 obese (BMI 35-50) and 10 normal weight (BMI 18.5-26.9) postmenopausal women paired by age and race. Epidermal thickness did not differ with obesity but the expression of genes encoding proteins associated with skin blood supply and wound healing were altered. In the obese, many gene expression pathways were broadly downregulated and subdermal fat showed pronounced inflammation. There were no changes in skin microbiota or metabolites. African American subjects differed from Caucasians with a trend to increased epidermal thickening. In obese African Americans, compared to obese Caucasians, we observed altered gene expression that may explain known differences in water content and stress response. African Americans showed markedly lower expression of the gene encoding the cystic fibrosis transmembrane regulator characteristic of the disease cystic fibrosis. The results from this preliminary study may explain the functional changes found in the skin of obese subjects and African Americans.</jats:p>

Journal article

Swann JR, Spitzer SO, Diaz Heijtz R, 2020, Developmental Signatures of Microbiota-Derived Metabolites in the Mouse Brain, METABOLITES, Vol: 10

Journal article

Giallourou N, Fardus-Reid F, Panic G, Veselkov K, McCormick BJJ, Olortegui MP, Ahmed T, Mduma E, Yori PP, Mahfuz M, Svensen E, Ahmed MMM, Colston JM, Kosek MN, Swann JRet al., 2020, Metabolic maturation in the first 2 years of life in resource-constrained settings and its association with postnatal growths, Science Advances, Vol: 6, Pages: 1-10, ISSN: 2375-2548

Malnutrition continues to affect the growth and development of millions of children worldwide, and chronic undernutrition has proven to be largely refractory to interventions. Improved understanding of metabolic development in infancy and how it differs in growth-constrained children may provide insights to inform more timely, targeted, and effective interventions. Here, the metabolome of healthy infants was compared to that of growth-constrained infants from three continents over the first 2 years of life to identify metabolic signatures of aging. Predictive models demonstrated that growth-constrained children lag in their metabolic maturity relative to their healthier peers and that metabolic maturity can predict growth 6 months into the future. Our results provide a metabolic framework from which future nutritional programs may be more precisely constructed and evaluated.

Journal article

Bhatt AP, Pellock SJ, Biernat KA, Walton WG, Wallace BD, Creekmore BC, Letertre MM, Swann JR, Wilson ID, Roques JR, Darr DB, Bailey ST, Montgomery SA, Roach JM, Azcarate-Peril MA, Sartor RB, Gharaibeh RZ, Bultman SJ, Redinbo MRet al., 2020, Targeted inhibition of gut bacterial β-glucuronidase activity enhances anticancer drug efficacy, Proceedings of the National Academy of Sciences, Vol: https://www.pnas.org/content/117/13/7374, Pages: 7374-7381, ISSN: 0027-8424

Irinotecan treats a range of solid tumors, but its effectiveness is severely limited by gastrointestinal (GI) tract toxicity caused by gut bacterial β-glucuronidase (GUS) enzymes. Targeted bacterial GUS inhibitors have been shown to partially alleviate irinotecan-induced GI tract damage and resultant diarrhea in mice. Here, we unravel the mechanistic basis for GI protection by gut microbial GUS inhibitors using in vivo models. We use in vitro, in fimo, and in vivo models to determine whether GUS inhibition alters the anticancer efficacy of irinotecan. We demonstrate that a single dose of irinotecan increases GI bacterial GUS activity in 1 d and reduces intestinal epithelial cell proliferation in 5 d, both blocked by a single dose of a GUS inhibitor. In a tumor xenograft model, GUS inhibition prevents intestinal toxicity and maintains the antitumor efficacy of irinotecan. Remarkably, GUS inhibitor also effectively blocks the striking irinotecan-induced bloom of Enterobacteriaceae in immune-deficient mice. In a genetically engineered mouse model of cancer, GUS inhibition alleviates gut damage, improves survival, and does not alter gut microbial composition; however, by allowing dose intensification, it dramatically improves irinotecan’s effectiveness, reducing tumors to a fraction of that achieved by irinotecan alone, while simultaneously promoting epithelial regeneration. These results indicate that targeted gut microbial enzyme inhibitors can improve cancer chemotherapeutic outcomes by protecting the gut epithelium from microbial dysbiosis and proliferative crypt damage.

Journal article

Rasmussen TS, Mentzel CMJ, Kot W, Castro-Mejía JL, Zuffa S, Swann JR, Hansen LH, Vogensen FK, Hansen AK, Nielsen DSet al., 2020, Faecal virome transplantation decreases symptoms of type 2 diabetes and obesity in a murine model, Gut, ISSN: 0017-5749

Objective Development of obesity and type 2 diabetes (T2D) are associated with gut microbiota (GM) changes. The gut viral community is predominated by bacteriophages (phages), which are viruses that attack bacteria in a host-specific manner. The antagonistic behaviour of phages has the potential to alter the GM. As a proof-of-concept, we demonstrate the efficacy of faecal virome transplantation (FVT) from lean donors for shifting the phenotype of obese mice into closer resemblance of lean mice.Design The FVT consisted of viromes with distinct profiles extracted from the caecal content of mice from different vendors that were fed a low-fat (LF) diet for 14 weeks. Male C57BL/6NTac mice were divided into five groups: LF (as diet control), high-fat (HF) diet, HF+ampicillin (Amp), HF+Amp+FVT and HF+FVT. At weeks 6 and 7 of the study, the HF+FVT and HF+Amp+FVT mice were treated with FVT by oral gavage. The Amp groups were treated with Amp 24 hours prior to first FVT treatment.Results Six weeks after first FVT, the HF+FVT mice showed a significant decrease in weight gain compared with the HF group. Further, glucose tolerance was comparable between the LF and HF+FVT mice, while the other HF groups all had impaired glucose tolerance. These observations were supported by significant shifts in GM composition, blood plasma metabolome and expression levels of genes associated with obesity and T2D development.Conclusions Transfer of caecal viral communities from mice with a lean phenotype into mice with an obese phenotype led to reduced weight gain and normalised blood glucose parameters relative to lean mice. We hypothesise that this effect is mediated via FVT-induced GM changes.

Journal article

Gough EK, Moulton LH, Mutasa K, Ntozini R, Stoltzfus RJ, Majo FD, Smith LE, Panic G, Giallourou N, Jamell M, Kosek P, Swann JR, Humphrey JH, Prendergast AJ, Sanitation Hygiene Infant Nutrition Efficacy SHINE Trial Teamet al., 2020, Effects of improved water, sanitation, and hygiene and improved complementary feeding on environmental enteric dysfunction in children in rural Zimbabwe: A cluster-randomized controlled trial., PLoS Neglected Tropical Diseases, Vol: 14, Pages: 1-29, ISSN: 1935-2727

BACKGROUND: Environmental enteric dysfunction (EED) may be an important modifiable cause of child stunting. We described the evolution of EED biomarkers from birth to 18 months in rural Zimbabwe and tested the independent and combined effects of improved water, sanitation, and hygiene (WASH), and improved infant and young child feeding (IYCF), on EED. METHODOLOGY AND FINDINGS: The Sanitation Hygiene Infant Nutrition Efficacy (SHINE) trial was a 2x2 factorial cluster-randomised trial of improved IYCF and improved WASH on child stunting and anaemia at 18 months of age. 1169 infants born to HIV-negative mothers provided plasma and faecal specimens at 1, 3, 6, 12, and 18 months of age. We measured EED biomarkers that reflect all domains of the hypothesized pathological pathway. Markers of intestinal permeability and intestinal inflammation declined over time, while markers of microbial translocation and systemic inflammation increased between 1-18 months. Markers of intestinal damage (I-FABP) and repair (REG-1β) mirrored each other, and citrulline (a marker of intestinal epithelial mass) increased from 6 months of age, suggesting dynamic epithelial turnover and regeneration in response to enteric insults. We observed few effects of IYCF and WASH on EED after adjustment for multiple comparisons. The WASH intervention decreased plasma IGF-1 at 3 months (β:0.89, 95%CI:0.81,0.98) and plasma kynurenine at 12 months (β: 0.92, 95%CI:0.87,0.97), and increased plasma IGF-1 at 18 months (β:1.15, 95%CI:1.05,1.25), but these small WASH effects did not translate into improved growth. CONCLUSIONS: Overall, we observed dynamic trends in EED but few effects of IYCF or WASH on biomarkers during the first 18 months after birth, suggesting that these interventions did not impact EED. Transformative WASH interventions are required to prevent or ameliorate EED in low-income settings.

Journal article

Leng J, Walton G, Swann J, Darby A, La Ragione R, Proudman Cet al., 2020, "Bowel on the Bench": Proof of Concept of a Three-Stage, <i>In Vitro</i> Fermentation Model of the Equine Large Intestine, APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Vol: 86, ISSN: 0099-2240

Journal article

Colston JM, Peñataro Yori P, Moulton LH, Paredes Olortegui M, Kosek PS, Rengifo Trigoso D, Siguas Salas M, Schiaffino F, François R, Fardus-Reid F, Swann JR, Kosek MNet al., 2019, Penalized regression models to select biomarkers of environmental enteric dysfunction associated with linear growth acquisition in a Peruvian birth cohort, PLoS Neglected Tropical Diseases, Vol: 13, ISSN: 1935-2727

Environmental enteric dysfunction (EED) is associated with chronic undernutrition. Effortsto identify minimally invasive biomarkers of EED reveal an expanding number of candidateanalytes. An analytic strategy is reported to select among candidate biomarkers and systematically express the strength of each marker’s association with linear growth in infancyand early childhood. 180 analytes were quantified in fecal, urine and plasma samples takenat 7, 15 and 24 months of age from 258 subjects in a birth cohort in Peru. Treating the subjects’ length-for-age Z-score (LAZ-score) over a 2-month lag as the outcome, penalized linear regression models with different shrinkage methods were fitted to determine the bestfitting subset. These were then included with covariates in linear regression models to obtainestimates of each biomarker’s adjusted effect on growth. Transferrin had the largest andmost statistically significant adjusted effect on short-term linear growth as measured byLAZ-score–a coefficient value of 0.50 (0.24, 0.75) for each log2 increase in plasma transferrin concentration. Other biomarkers with large effect size estimates included adiponectin,arginine, growth hormone, proline and serum amyloid P-component. The selected subsetexplained up to 23.0% of the variability in LAZ-score. Penalized regression modelingapproaches can be used to select subsets from large panels of candidate biomarkers ofEED. There is a need to systematically express the strength of association of biomarkerswith linear growth or other outcomes to compare results across studies.

Journal article

Louis-Auguste J, Besa E, Zyambo K, Munkombwe D, Banda R, Banda T, Watson A, Mayneris-Perxachs J, Swann J, Kelly Pet al., 2019, Tryptophan, glutamine, leucine, and micronutrient supplementation improves environmental enteropathy in Zambian adults: a randomized controlled trial, AMERICAN JOURNAL OF CLINICAL NUTRITION, Vol: 110, Pages: 1240-1252, ISSN: 0002-9165

Journal article

Rasmussen TS, Mentzel CMJ, Kot W, Castro-Mejía JL, Zuffa S, Swann J, Hansen LH, Vogensen FK, Hansen AK, Nielsen DSet al., 2019, Faecal virome transplantation decrease symptoms of type-2-diabetes and obesity in a murine model

<jats:title>ABSTRACT</jats:title><jats:sec><jats:title>Objective</jats:title><jats:p>Development of obesity and type-2-diabetes (T2D) are associated with gut microbiota (GM) changes. The gut viral community is predominated by bacteriophages (phages), which are viruses that attack bacteria in a host-specific manner. As a proof-of-concept we demonstrate the efficacy of faecal virome transplantation (FVT) from lean donors for shifting the phenotype of obese mice into closer resemblance of lean mice.</jats:p></jats:sec><jats:sec><jats:title>Design</jats:title><jats:p>The FVT consisted of viromes extracted from the caecal content of mice fed a low-fat (LF) diet for fourteen weeks. Male C57BL/6NTac mice were divided into five groups: LF (as control), high-fat diet (HF), HF+Ampicillin (Amp), HF+Amp+FVT and HF+FVT. At week six and seven of the study the HF+FVT and HF+Amp+FVT mice were treated with FVT by oral gavage. The Amp groups were treated with ampicillin 24 h prior to first FVT treatment.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>Six weeks after first FVT the HF+FVT mice showed a significant decrease in weight gain compared to the HF group. Further, glucose tolerance was comparable between the lean LF and HF+FVT mice, while the other HF groups all had impaired glucose tolerance. These observations were supported by significant shifts in GM composition, blood plasma metabolome, and expression levels of genes involved in obesity and T2D development.</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>Transfer of gut viral communities from mice with a lean phenotype into those with an obese phenotype reduce weight gain and normalise blood glucose parameters relative to lean mice. We hypothesise that this effect is mediated via FVT-induced GM changes.</jats:p></jats:sec>&

Journal article

Caspani G, Kennedy S, Foster JA, Swann Jet al., 2019, Gut microbial metabolites in depression: understanding the biochemical mechanisms, Microbial Cell, Vol: 6, Pages: 454-481, ISSN: 2311-2638

Gastrointestinal and central function are intrinsically connected by the gut microbiota, an ecosystem that has co-evolved with the host to expand its biotransformational capabilities and interact with host physiological processes by means of its metabolic products. Abnormalities in this microbiota-gut-brain axis have emerged as a key component in the pathophysiology of depression, leading to more research attempting to understand the neuroactive potential of the products of gut microbial metabolism. This review explores the potential for the gut microbiota to contribute to depression and focuses on the role that microbially-derived molecules – neurotransmitters, short-chain fatty acids, indoles, bile acids, choline metabolites, lactate and vitamins – play in the context of emotional behavior. The future of gut-brain axis research lies is moving away from association, towards the mechanisms underlying the relationship between the gut bacteria and depressive behavior. We propose that direct and indirect mechanisms exist through which gut microbial metabolites affect depressive behavior: these include (i) direct stimulation of central receptors, (ii) peripheral stimulation of neural, endocrine, and immune mediators, and (iii) epigenetic regulation of histone acetylation and DNA methylation. Elucidating these mechanisms is essential to expand our understanding of the etiology of depression, and to develop new strategies to harness the beneficial psychotropic effects of these molecules. Overall, the review highlights the potential for dietary interventions to represent such novel therapeutic strategies for major depressive disorder.

Journal article

Heijtz RD, Swann J, 2019, Editorial overview: CNS diseases and the microbiome, CURRENT OPINION IN PHARMACOLOGY, Vol: 48, Pages: X-XII, ISSN: 1471-4892

Journal article

Caspani G, Swann J, 2019, Small talk: microbial metabolites involved in the signaling from microbiota to brain, Current Opinion in Pharmacology, Vol: 48, Pages: 99-106, ISSN: 1471-4892

The wealth of biotransformational capabilities encoded in the microbiome expose the host to an array of bioactive xenobiotic products. Several of these metabolites participate in the communication between the gastrointestinal tract and the central nervous system and have potential to modulate central physiological and pathological processes. This biochemical interplay can occur through various direct and indirect mechanisms. These include binding to host receptors in the brain, stimulation of the vagus nerve in the gut, alteration of central neurotransmission, and modulation of neuroinflammation. Here, the potential for short chain fatty acids, bile acids, neurotransmitters and other bioactive products of the microbiome to participate in the gut-brain axis will be reviewed.

Journal article

Nye LC, Williams JP, Munjoma NC, Letertre MPM, Coen M, Bouwmeester R, Martens L, Swann JR, Nicholson JK, Plumb RS, McCullagh M, Gethings LA, Lai S, Langridge J, Vissers JPC, Wilson IDet al., 2019, A comparison of collision cross section values obtained via travelling wave ion mobility-mass spectrometry and ultra high performance liquid chromatography-ion mobility-mass spectrometry: Application to the characterisation of metabolites in rat urine, Journal of Chromatography A, Vol: 1602, Pages: 386-396, ISSN: 0021-9673

A comprehensive Collision Cross Section (CCS) library was obtained via Travelling Wave Ion Guide mobility measurements through direct infusion (DI). The library consists of CCS and Mass Spectral (MS) data in negative and positive ElectroSpray Ionisation (ESI) mode for 463 and 479 endogenous metabolites, respectively. For both ionisation modes combined, TWCCSN2 data were obtained for 542 non-redundant metabolites. These data were acquired on two different ion mobility enabled orthogonal acceleration QToF MS systems in two different laboratories, with the majority of the resulting TWCCSN2 values (from detected compounds) found to be within 1% of one another. Validation of these results against two independent, external TWCCSN2 data sources and predicted TWCCSN2 values indicated to be within 1–2% of these other values. The same metabolites were then analysed using a rapid reversed-phase ultra (high) performance liquid chromatographic (U(H)PLC) separation combined with IM and MS (IM-MS) thus providing retention time (tr), m/z and TWCCSN2 values (with the latter compared with the DI-IM-MS data). Analytes for which TWCCSN2 values were obtained by U(H)PLC-IM-MS showed good agreement with the results obtained from DI-IM-MS. The repeatability of the TWCCSN2 values obtained for these metabolites on the different ion mobility QToF systems, using either DI or LC, encouraged the further evaluation of the U(H)PLC-IM-MS approach via the analysis of samples of rat urine, from control and methotrexate-treated animals, in order to assess the potential of the approach for metabolite identification and profiling in metabolic phenotyping studies. Based on the database derived from the standards 63 metabolites were identified in rat urine, using positive ESI, based on the combination of tr, TWCCSN2 and MS data.

Journal article

Bailey, Breton, Panic, Cogan, Bailey, Swann, Leeet al., 2019, The mycotoxin deoxynivalenol significantly alters the function and metabolism of bovine kidney epithelial cells in vitro, Toxins, Vol: 11, Pages: 1-13, ISSN: 2072-6651

Bovine mycotoxicosis is a disorder caused by the ingestion of fungal toxins. It is associated with chronic signs, such as reduced growth rate and milk yield, and causes significant economic cost to the dairy industry. The mycotoxins deoxynivalenol (DON), zearalenone (ZEN), and fumonisin B1 (FB1) are commonly found in grain fed to cattle. Patulin (PA) is a common grass silage contaminant but is also found in grain. The effects of these mycotoxins on cellular function at low concentrations are not well understood. Using Madin–Darby bovine kidney cells we evaluated the cellular response to these mycotoxins, measuring cytotoxicity, de novo protein synthesis, cell proliferation, cell cycle analysis, and also metabolic profiling by 1H NMR spectroscopy. DON, ZEN, and PA induced cytotoxicity, and PA and FB1 induced a decrease in metabolic activity in surviving cells. DON was the only mycotoxin found to have a significant effect on the metabolic profile, with exposed cells showing increased cellular amino acids, lactate, 2-oxoglutarate, 3-hydroxybutyrate, and UDP-N-acetylglucosamine and decreased β-alanine, choline, creatine, taurine, and myo-inositol. Cells exposed to DON also showed reductions in protein synthesis. DON has previously been documented as being a ribotoxin; the results here suggest that exposure of bovine cells to DON causes a decrease in protein synthesis with corresponding cellular accumulation of precursors. Cell proliferation was also arrested without causing apoptosis. It is likely that exposure triggers hypoxic, hypertonic, and ribotoxic responses in bovine cells, and that these responses contribute to reduced productivity in exposed cattle. View Full-Text

Journal article

McBain AJ, O'Neill CA, Amezquita A, Price LJ, Faust K, Tett A, Segata N, Swann JR, Smith AM, Murphy B, Hoptroff M, James G, Reddy Y, Dasgupta A, Ross T, Chapple IL, Wade WG, Fernandez-Piquer Jet al., 2019, Consumer safety considerations of skin and oral microbiome perturbation., Clinical Microbiology Reviews, Vol: 32, Pages: 1-23, ISSN: 0893-8512

Microbiomes associated with human skin and the oral cavity are uniquely exposed to personal care regimes. Changes in the composition and activities of the microbial communities in these environments can be utilized to promote consumer health benefits, for example, by reducing the numbers, composition, or activities of microbes implicated in conditions such as acne, axillary odor, dandruff, and oral diseases. It is, however, important to ensure that innovative approaches for microbiome manipulation do not unsafely disrupt the microbiome or compromise health, and where major changes in the composition or activities of the microbiome may occur, these require evaluation to ensure that critical biological functions are unaffected. This article is based on a 2-day workshop held at SEAC Unilever, Sharnbrook, United Kingdom, involving 31 specialists in microbial risk assessment, skin and oral microbiome research, microbial ecology, bioinformatics, mathematical modeling, and immunology. The first day focused on understanding the potential implications of skin and oral microbiome perturbation, while approaches to characterize those perturbations were discussed during the second day. This article discusses the factors that the panel recommends be considered for personal care products that target the microbiomes of the skin and the oral cavity.

Journal article

Randall DW, Kieswich J, Swann J, McCafferty K, Thiemermann C, Curtis M, Hoyles L, Yaqoob MMet al., 2019, Batch effect exerts a bigger influence on the rat urinary metabolome and gut microbiota than uraemia: a cautionary tale, Microbiome, Vol: 7, Pages: 1-10, ISSN: 2049-2618

BackgroundRodent models are invaluable for studying biological processes in the context of whole organisms. The reproducibility of such research is based on an assumption of metabolic similarity between experimental animals, controlled for by breeding and housing strategies that minimise genetic and environmental variation. Here, we set out to demonstrate the effect of experimental uraemia on the rat urinary metabolome and gut microbiome but found instead that the effect of vendor shipment batch was larger in both areas than that of uraemia.ResultsTwenty four Wistar rats obtained from the same commercial supplier in two separate shipment batches underwent either subtotal nephrectomy or sham procedures. All animals undergoing subtotal nephrectomy developed an expected uraemic phenotype. The urinary metabolome was studied using 1H-NMR spectroscopy and found to vary significantly between animals from different batches, with substantial differences in concentrations of a broad range of substances including lactate, acetate, glucose, amino acids, amines and benzoate derivatives. In animals from one batch, there was a complete absence of the microbiome-associated urinary metabolite hippurate, which was present in significant concentrations in animals from the other batch. These differences were so prominent that we would have drawn quite different conclusions about the effect of uraemia on urinary phenotype depending on which batch of animals we had used. Corresponding differences were seen in the gut microbiota between animals in different batches when assessed by the sequencing of 16S rRNA gene amplicons, with higher alpha diversity and different distributions of Proteobacteria subtaxa and short-chain fatty acid producing bacteria in the second batch compared to the first. Whilst we also demonstrated differences in both the urinary metabolome and gut microbiota associated with uraemia, these effects were smaller in size than those associated with shipment batch.Conclusi

Journal article

Giallourou NS, Rowland IR, Rothwell SD, Packham G, Commane DM, Swann JRet al., 2019, Metabolic targets of watercress and PEITC in MCF-7 and MCF-10A cells explain differential sensitisation responses to ionising radiation, European Journal of Nutrition, Vol: 58, Pages: 2377-2391, ISSN: 0044-264X

PURPOSE: Watercress is a rich source of phytochemicals with anticancer potential, including phenethyl isothiocyanate (PEITC). We examined the potential for watercress extracts and PEITC to increase the DNA damage caused by ionising radiation (IR) in breast cancer cells and to be protective against radiation-induced collateral damage in healthy breast cells. The metabolic events that mediate such responses were explored using metabolic profiling. METHODS: 1H nuclear magnetic resonance spectroscopy-based metabolic profiling was coupled with DNA damage-related assays (cell cycle, Comet assay, viability assays) to profile the comparative effects of watercress and PEITC in MCF-7 breast cancer cells and MCF-10A non-tumorigenic breast cells with and without exposure to IR. RESULTS: Both the watercress extract and PEITC-modulated biosynthetic pathways of lipid and protein synthesis and resulted in changes in cellular bioenergetics. Disruptions to the redox balance occurred with both treatments in the two cell lines, characterised by shifts in the abundance of glutathione. PEITC enhanced the sensitivity of the breast cancer cells to IR increasing the effectiveness of the cancer-killing process. In contrast, watercress-protected non-tumorigenic breast cells from radiation-induced damage. These effects were driven by changes in the cellular content of the antioxidant glutathione following exposure to PEITC and other phytochemicals in watercress. CONCLUSION: These findings support the potential prophylactic impact of watercress during radiotherapy. Extracted compounds from watercress and PEITC differentially modulate cellular metabolism collectively enhancing the therapeutic outcomes of radiotherapy.

Journal article

Brierley DI, Harman JR, Giallourou N, Leishman E, Roashan AE, Mellows BAD, Bradshaw HB, Swann JR, Patel K, Whalley BJ, Williams CMet al., 2019, Chemotherapy-induced cachexia dysregulates hypothalamic and systemic lipoamines and is attenuated by cannabigerol, Journal of Cachexia, Sarcopenia and Muscle, Vol: 10, Pages: 844-859, ISSN: 2190-6009

BACKGROUND: Muscle wasting, anorexia, and metabolic dysregulation are common side-effects of cytotoxic chemotherapy, having a dose-limiting effect on treatment efficacy, and compromising quality of life and mortality. Extracts of Cannabis sativa, and analogues of the major phytocannabinoid Δ9-tetrahydrocannabinol, have been used to ameliorate chemotherapy-induced appetite loss and nausea for decades. However, psychoactive side-effects limit their clinical utility, and they have little efficacy against weight loss. We recently established that the non-psychoactive phytocannabinoid cannabigerol (CBG) stimulates appetite in healthy rats, without neuromotor side-effects. The present study assessed whether CBG attenuates anorexia and/or other cachectic effects induced by the broad-spectrum chemotherapy agent cisplatin. METHODS: An acute cachectic phenotype was induced in adult male Lister-hooded rats by 6 mg/kg (i.p.) cisplatin. In total 66 rats were randomly allocated to groups receiving vehicle only, cisplatin only, or cisplatin and 60 or 120 mg/kg CBG (po, b.i.d.). Feeding behavior, bodyweight and locomotor activity were recorded for 72 hours, at which point rats were sacrificed for post-mortem analyses. Myofibre atrophy, protein synthesis and autophagy dysregulation were assessed in skeletal muscle, plasma metabolic profiles were obtained by untargeted 1H-NMR metabonomics, and levels of endocannabinoid-like lipoamines quantified in plasma and hypothalami by targeted HPLC-MS/MS lipidomics. RESULTS: CBG (120 mg/kg) modestly increased food intake, predominantly at 36-60hrs (p<0.05), and robustly attenuated cisplatin-induced weight loss from 6.3% to 2.6% at 72hrs (p<0.01). Cisplatin-induced skeletal muscle atrophy was associated with elevated plasma corticosterone (3.7 vs 13.1ng/ml, p<0.01), observed selectively in MHC type IIx (p<0.05) and IIb (p<0.0005) fibres, and was reversed by pharmacological rescue of dysregulated Akt/S6-mediated protein synth

Journal article

Alcon-Giner C, Dalby MJ, Caim S, Ketskemety J, Shaw A, Sim K, Lawson M, Kiu R, Leclaire C, Chalklen L, Kujawska M, Mitra S, Fardus-Reid F, Belteki G, McColl K, Swann JR, Kroll JS, Clarke P, Hall LJet al., 2019, Microbiota supplementation with<i>Bifidobacterium</i>and<i>Lactobacillus</i>modifies the preterm infant gut microbiota and metabolome

<jats:title>Abstract</jats:title><jats:p>Supplementation with members of the early-life microbiota or ‘probiotics’ is becoming increasingly popular to attempt to beneficially manipulate the preterm gut microbiota. We performed a large longitudinal study comprising two preterm groups; 101 orally supplemented with<jats:italic>Bifidobacterium</jats:italic>and<jats:italic>Lactobacillus</jats:italic>(Bif/Lacto) and 133 non-supplemented (Control) matched by age, sex, birth-mode, and diet. 16S rRNA metataxonomic profiling on stool samples (n = 592) indicated a predominance of<jats:italic>Bifidobacterium</jats:italic>, and a reduction of pathobionts in the Bif/Lacto group. Metabolic phenotyping found a parallel increase in fecal acetate and lactate in the Bif/Lacto group compared to the Control group, which positively correlated with<jats:italic>Bifidobacterium</jats:italic>abundance consistent with the ability of the supplemented<jats:italic>Bifidobacterium</jats:italic>strain to metabolize human milk oligosaccharides and reduced gut pH. This study demonstrates that microbiota supplementation can modify the preterm microbiome and the gastrointestinal environment to more closely resemble that of a full-term infant.</jats:p>

Journal article

Bwakura-Dangarembizi M, Amadi B, Bourke CD, Robertson RC, Mwapenya B, Chandwe K, Kapoma C, Chifunda K, Majo F, Ngosa D, Chakara P, Chulu N, Masimba F, Mapurisa I, Besa E, Mutasa K, Mwakamui S, Runodamoto T, Humphrey JH, Ntozini R, Wells JCK, Manges AR, Swann JR, Walker AS, Nathoo KJ, Kelly P, Prendergast AJ, Sauramba V, Dandadzi A, Kureva C, Mushonga J, Mpofu E, Dune W, Chidhanguro T, Nkiwane S, Rukobo S, Govha M, Mashayanembwa P, Chidamba L, Chasekwa B, Tome J, Makasi R, Murenjekekwa W, Chidawanyika T, Tsenesa B, Moyo S, Nyamwino P, Simango P, Seremwe S, Chingaoma L, Kasaru S, Tembo A, Mpundu M, Nyendwa E, Nayame G, Tembo D, Mwaba S, Chilala E, Macwani L, Dumba T, Chipunza M, Kazhila L, Gondwe T, Phiri D, Mwanza M, Zyambo Ket al., 2019, Health Outcomes, Pathogenesis and Epidemiology of Severe Acute Malnutrition (HOPE-SAM): rationale and methods of a longitudinal observational study, BMJ OPEN, Vol: 9, ISSN: 2044-6055

Journal article

Powles STR, Chong LW, Gallagher KI, Hicks LC, Swann JR, Holmes E, Williams HRT, Orchard TRet al., 2019, EFFECT OF ETHNICITY ON THE FAECAL WATER METABOLIC PROFILES IN CROHN'S DISEASE, Annual Meeting of the British-Society-of-Gastroenterology (BSG), Publisher: BMJ PUBLISHING GROUP, Pages: A90-A91, ISSN: 0017-5749

Conference paper

Powles STR, Gallagher K, Hicks LC, Chong LW, Swann JR, Holmes E, Williams HRT, Orchard TRet al., 2019, EFFECT OF CO-MORBIDITIES IN CROHN'S DISEASE ASSOCIATED URINARY METABOLIC PROFILES, Annual Meeting of the British-Society-of-Gastroenterology (BSG), Publisher: BMJ PUBLISHING GROUP, Pages: A89-A90, ISSN: 0017-5749

Conference paper

Al Hinai EA, Kullamethee P, Rowland IR, Swann J, Walton GE, Commane DMet al., 2019, Modelling the role of microbial p-cresol in colorectal genotoxicity, Gut Microbes, Vol: 10, Pages: 398-411, ISSN: 1949-0976

Background: A greater understanding of mechanisms explaining the interactions between diet and the gut microbiota in colorectal cancer is desirable. Genotoxic microbial metabolites present in the colon may be implicated in carcinogenesis and potentially influenced by diet.Aims: We hypothesised that microbial p-cresol is a colonic genotoxin and set out to model potential exposures in the colon and the effects of these exposures on colonic cells.Methods: Batch culture fermentations with human faecal inoculate were used to determine the synthesis of p-cresol and other metabolites in response to various substrates. The fermentation supernatants were evaluated for genotoxicity and the independent effects of p-cresol on colonic cells were studied in vitro.Results: In batch culture fermentation, supplementary protein increased the synthesis of phenols, indoles and p-cresol, whereas supplementary fructoligosaccharide (FOS) increased the synthesis of short chain fatty acids. The p-cresol was the greatest predictor of genotoxicity against colonocytes in the fermentation supernatants. Spiking fermentation supernatants with exogenous p-cresol further increased DNA damage, and independently p-cresol induced DNA damage in a dose-dependent manner against HT29 and Caco-2 cells and influenced cell cycle kinetics.Conclusions: In the colon p-cresol may reach physiologically significant concentrations which contribute to genotoxic exposures in the intestinal lumen, p-cresol production may be attenuated by substrate, and therefore diet, making it a potential modifiable biomarker of genotoxicity in the colon.

Journal article

Lees HJ, Swann JR, Poucher S, Holmes E, Wilson ID, Nicholson JKet al., 2019, Obesity and cage environment modulate metabolism in the Zucker rat: a multiple biological matrix approach to characterizing metabolic phenomena, Journal of Proteome Research, Vol: 18, Pages: 2160-2174, ISSN: 1535-3893

Obesity and its comorbidities are increasing worldwide imposing a heavy socioeconomic burden. The effects of obesity on the metabolic profiles of tissues (liver, kidney, pancreas), urine, and the systemic circulation were investigated in the Zucker rat model using 1H NMR spectroscopy coupled to multivariate statistical analysis. The metabolic profiles of the obese ( fa/ fa) animals were clearly differentiated from the two phenotypically lean phenotypes, ((+/+) and ( fa/+)) within each biological compartment studied, and across all matrices combined. No significant differences were observed between the metabolic profiles of the genotypically distinct lean strains. Obese Zucker rats were characterized by higher relative concentrations of blood lipid species, cross-compartmental amino acids (particularly BCAAs), urinary and liver metabolites relating to the TCA cycle and glucose metabolism; and lower amounts of urinary gut microbial-host cometabolites, and intermatrix metabolites associated with creatine metabolism. Further to this, the obese Zucker rat metabotype was defined by significant metabolic alterations relating to disruptions in the metabolism of choline across all compartments analyzed. The cage environment was found to have a significant effect on urinary metabolites related to gut-microbial metabolism, with additional cage-microenvironment trends also observed in liver, kidney, and pancreas. This study emphasizes the value in metabotyping multiple biological matrices simultaneously to gain a better understanding of systemic perturbations in metabolism, and also underscores the need for control or evaluation of cage environment when designing and interpreting data from metabonomic studies in animal models.

Journal article

Saffouri GB, Shields-Cutler RR, Chen J, Yang Y, Lekatz HR, Hale VL, Cho JM, Battaglioli EJ, Bhattarai Y, Thompson KJ, Kalari KK, Behera G, Berry JC, Peters SA, Patel R, Schuetz AN, Faith JJ, Camilleri M, Sonnenburg JL, Farrugia G, Swann JR, Grover M, Knights D, Kashyap PCet al., 2019, Small intestinal microbial dysbiosis underlies symptoms associated with functional gastrointestinal disorders, Nature Communications, Vol: 10, ISSN: 2041-1723

Small intestinal bacterial overgrowth (SIBO) has been implicated in symptoms associated with functional gastrointestinal disorders (FGIDs), though mechanisms remain poorly defined and treatment involves non-specific antibiotics. Here we show that SIBO based on duodenal aspirate culture reflects an overgrowth of anaerobes, does not correspond with patient symptoms, and may be a result of dietary preferences. Small intestinal microbial composition, on the other hand, is significantly altered in symptomatic patients and does not correspond with aspirate culture results. In a pilot interventional study we found that switching from a high fiber diet to a low fiber, high simple sugar diet triggered FGID-related symptoms and decreased small intestinal microbial diversity while increasing small intestinal permeability. Our findings demonstrate that characterizing small intestinal microbiomes in patients with gastrointestinal symptoms may allow a more targeted antibacterial or a diet-based approach to treatment.

Journal article

Whiley LW, Nye L, Grant I, Andreas N, Chappell K, Sarafian MHS, Misra R, Plumb R, Lewis M, Nicholson J, Holmes E, Swann J, Wilson Iet al., 2019, Ultrahigh-performance liquid chromatography tandem mass spectrometry with electrospray ionization quantification of tryptophan metabolites and markers of gut health in serum and plasmaapplication to clinical and epidemiology cohorts, Analytical Chemistry, Vol: 91, Pages: 5207-5216, ISSN: 0003-2700

A targeted ultrahigh-performance liquid chromatography tandem mass spectrometry with electrospray ionization (UHPLC-ESI-MS/MS) method has been developed for the quantification of tryptophan and its downstream metabolites from the kynurenine and serotonin pathways. The assay coverage also includes markers of gut health and inflammation, including citrulline and neopterin. The method was designed in 96-well plate format for application in multiday, multiplate clinical and epidemiology population studies. A chromatographic cycle time of 7 min enables the analysis of two 96-well plates in 24 h. To protect chromatographic column lifespan, samples underwent a two-step extraction, using solvent protein precipitation followed by delipidation via solid-phase extraction (SPE). Analytical validation reported accuracy of each analyte <20% for the lowest limit of quantification and <15% for all other quality control (QC) levels. The analytical precision for each analyte was 2.1–12.9%. To test the applicability of the method to multiplate and multiday preparations, a serum pool underwent periodic repeat analysis during a run consisting of 18 plates. The % CV (coefficient of variation) values obtained for each analyte were <15%. Additional biological testing applied the assay to samples collected from healthy control participants and two groups diagnosed with inflammatory bowel disease (IBD) (one group treated with the anti-inflammatory 5-aminosalicylic acid (5-ASA) and one group untreated), with results showing significant differences in the concentrations of picolinic acid, kynurenine, and xanthurenic acid. The short analysis time and 96-well plate format of the assay makes it suitable for high-throughput targeted UHPLC-ESI-MS/MS metabolomic analysis in large-scale clinical and epidemiological population studies.

Journal article

Melo-Gonzalez F, Kammoun H, Evren E, Dutton EE, Papadopoulou M, Bradford BM, Tanes C, Fardus-Reid F, Swann JR, Bittinger K, Mabbott NA, Vallance BA, Willinger T, Withers DR, Hepworth MRet al., 2019, Antigen-presenting ILC3 regulate T cell-dependent IgA responses to colonic mucosal bacteria, Journal of Experimental Medicine, Vol: 216, Pages: 728-742, ISSN: 0022-1007

Intestinal immune homeostasis is dependent upon tightly regulated and dynamic host interactions with the commensal microbiota. Immunoglobulin A (IgA) produced by mucosal B cells dictates the composition of commensal bacteria residing within the intestine. While emerging evidence suggests the majority of IgA is produced innately and may be polyreactive, mucosal-dwelling species can also elicit IgA via T cell-dependent mechanisms. However, the mechanisms that modulate the magnitude and quality of T cell-dependent IgA responses remain incompletely understood. Here we demonstrate that group 3 innate lymphoid cells (ILC3) regulate steady state interactions between T follicular helper cells (TfH) and B cells to limit mucosal IgA responses. ILC3 used conserved migratory cues to establish residence within the interfollicular regions of the intestinal draining lymph nodes, where they act to limit TfH responses and B cell class switching through antigen presentation. The absence of ILC3-intrinsic antigen presentation resulted in increased and selective IgA coating of bacteria residing within the colonic mucosa. Together these findings implicate lymph node resident, antigen-presenting ILC3 as a critical regulatory checkpoint in the generation of T cell-dependent colonic IgA and suggest ILC3 act to maintain tissue homeostasis and mutualism with the mucosal-dwelling commensal microbiota.

Journal article

Fagotti J, Targa A, Rodrigues L, Noseda AC, Dorieux F, Scarante F, Ilkiw J, Louzada F, Chowdhury N, van der Veen D, Middleton B, Pennings J, Swann J, Skene D, Lima Met al., 2019, Chronic sleep restriction in the rotenone Parkinson's disease model in rats reveals peripheral early-phase biomarkers, Scientific Reports, Vol: 9, ISSN: 2045-2322

Parkinson’s disease (PD) is a chronic disorder that presents a range of premotor signs, such as sleep disturbances and cognitive decline, which are key non-motor features of the disease. Increasing evidence of a possible association between sleep disruption and the neurodegenerative process suggests that sleep impairment could produce a detectable metabolic signature on the disease. In order to integrate neurocognitive and metabolic parameters, we performed untargeted and targeted metabolic profiling of the rotenone PD model in a chronic sleep restriction (SR) (6 h/day for 21 days) condition. We found that SR combined with PD altered several behavioural (reversal of locomotor activity impairment; cognitive impairment; delay of rest-activity rhythm) and metabolic parameters (branched-chain amino acids, tryptophan pathway, phenylalanine, and lipoproteins, pointing to mitochondrial impairment). If combined, our results bring a plethora of parameters that represents reliable early-phase PD biomarkers which can easily be measured and could be translated to human studies.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00413072&limit=30&person=true&page=3&respub-action=search.html