Imperial College London

ProfessorJamesWare

Faculty of MedicineNational Heart & Lung Institute

Professor of Cardiovascular and Genomic Medicine
 
 
 
//

Contact

 

j.ware Website

 
 
//

Assistant

 

Ms Lisa Quinn +44 (0)20 7594 1345

 
//

Location

 

3 13GLMS BuildingHammersmith Campus

//

Summary

 

Summary

James Ware is a Professor of Cardiovascular and Genomic Medicine at Imperial College London, MRC Investigator at the MRC Laboratory of Medical Sciences, and Honorary Consultant Cardiologist at Royal Brompton and Harefield Hospitals, and at Imperial College Hospitals.  His research group spans the National Heart & Lung Institute, the MRC London Institute of Medical Sciences, the NIHR Imperial Biomedical Research Centre, the BHF Imperial Centre of Research Excellence, and the Royal Brompton Cardiovascular Research Centre. The group's work is supported by the Sir Jules Thorn Charitable Trust, the Wellcome Trust, the Medical Research Council, the British Heart Foundation, the National Institute for Health Research, the US National Institutes for Health, the NHLI Foundation, and Cardiomyopathy UK.  James also has a visiting position at the Broad Institute of MIT and Harvard.

James’ overarching research aims are to understand the impact of genetic variation on the heart and circulation, and to use genome information to improve patient care. 

Research

Understanding the genetic architecture of cardiomyopathies – we are using genetic & genomic approaches  to understand the genetic underpinnings of heritable heart muscle diseases in humans.  We are using exome and genome sequencing approaches to find genes that cause Mendelian (single-gene) forms of these diseases, and are also exploring the role of more common genetic and environmental factors that modulate disease risk and severity.  These studies both provide diagnostic answers to affected families, and also identify potential new therapeutic targets.

We have also launched a community web portal - the heart hive - to support patient participation in research into heart muscle disease,  allowing participants to self-enrol in our research, and to see what other research opportunities are available.

Variant interpretation – all of us carry rare variants that alter important genes.  Distinguishing between those that cause disease and those that are innocent bystanders is a key challenge in contemporary clinical genetics.  We are developing and applying new methods to address this challenge, and collaborating globally to refine our understanding of variation in genes associated with heart disease.

Precision medicinewe are evaluating the use of genetic and other biomarkers to stratify patients and predict their response to therapy and long-term outcomes.  Ultimately, we are working to interpret genome information so that it can be used to optimise treatment choice for our patients.

Titin – we have a particular focus on the Titin gene, which encodes the largest human protein, a key component of muscles throughout the body.  Recently identified as the most important cause of inherited dilated cardiomyopathy, we are working to understand the effects of Titin variants on the heart, their mechanisms of action, and their clinical significance.

Software - web resources, software, and other tools developed by the group are available here.

Clinical

In the clinic, James is a Cardiologist specializing in the diagnosis and management of inherited cardiac conditions, including cardiomyopathies and inherited arrhythmia syndromes.  This includes the assessment of families in which there has been a sudden unexplained death, in which case it is important to look for an underlying genetic condition that may also affect surviving relatives.  For referral information please follow the links for NHS (UK) or private (UK or international) patients.


Biography

Dr Ware graduated from the University of Cambridge in 2000, and pursued general medical training in Cambridge, London and Geneva before appointment to specialist training in Cardiology in 2007.  After a PhD at the MRC Clinical Sciences Centre (CSC), funded by a Fellowship from the Wellcome Trust, he was appointed an NIHR Clinical Lecturer in 2012, and undertook post-doctoral research at the MRC CSC, Imperial College, Harvard Medical School, and the Broad Institute.  He was awarded a Wellcome Trust Intermediate Clinical Fellowship in 2015 and returned from Boston to start his own research group.

Selected Publications

Journal Articles

Wilde AAM, Semsarian C, Márquez MF, et al., 2022, European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases, Europace, Vol:38, ISSN:1099-5129, Pages:491-553

McGurk KA, Zheng SL, Henry A, et al., 2022, Correspondence on "ACMG SF v3.0 list for reporting of secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG)" by Miller et al, Genetics in Medicine, Vol:24, ISSN:1098-3600, Pages:744-746

Simoes Monteiro de Marvao A, McGurk K, Zheng S, et al., 2021, Phenotypic expression and outcomes in individuals with rare genetic variants of hypertrophic cardiomyopathy, Journal of the American College of Cardiology, Vol:78, ISSN:0735-1097, Pages:1097-1110

Gudmundsson S, Karczewski KJ, Francioli LC, et al., 2021, The mutational constraint spectrum quantified from variation in 141,456 humans (vol 581, pg 434, 2020), Nature, Vol:597, ISSN:0028-0836, Pages:E3-E4

Tadros R, Francis C, Xu X, et al., 2021, Shared genetic pathways contribute to risk of hypertrophic and dilated cardiomyopathies with opposite directions of effect, Nature Genetics, Vol:53, ISSN:1061-4036, Pages:128-+

Whiffin N, Karczewski KJ, Zhang X, et al., 2020, Characterising the loss-of-function impact of 5' untranslated region variants in 15,708 individuals, Nature Communications, Vol:11, ISSN:2041-1723, Pages:1-12

Mazzarotto F, Tayal U, Buchan RJ, et al., 2020, Re-evaluating the genetic contribution of monogenic dilated cardiomyopathy, Circulation, Vol:141, ISSN:0009-7322, Pages:387-398

Garcia-Pavia P, Kim Y, Restrepo-Cordoba MA, et al., 2019, Genetic variants associated with cancer therapy-induced cardiomyopathy, Circulation, Vol:140, ISSN:0009-7322, Pages:31-41

Walsh R, Mazzarotto F, Whiffin N, et al., 2019, Quantitative approaches to variant classification increase the yield and precision of genetic testing in Mendelian diseases: The case of hypertrophic cardiomyopathy, Genome Medicine, Vol:11, ISSN:1756-994X

Halliday BP, Wassall R, Lota A, et al., 2019, Withdrawal of pharmacological treatment for heart failure in patients with recovered dilated cardiomyopathy (TRED-HF): an open-label, pilot, randomised trial, The Lancet, Vol:393, ISSN:0140-6736, Pages:61-73

Ware JS, Amor-Salamanca A, Tayal U, et al., 2018, A genetic etiology for alcohol-induced cardiac toxicity, Journal of the American College of Cardiology, Vol:71, ISSN:0735-1097, Pages:2293-2302

Ware JS, Cook SA, 2017, Role of titin in cardiomyopathy: from DNA variants to patient stratification, Nature Reviews Cardiology, Vol:15, ISSN:1759-5002, Pages:241-252

Walsh R, Buchan R, Wilk A, et al., 2017, Defining the genetic architecture of hypertrophic cardiomyopathy: re-evaluating the role of non-sarcomeric genes, European Heart Journal, Vol:38, ISSN:1522-9645, Pages:3461-3468

Alamo L, Ware JS, Pinto A, et al., 2017, Effects of myosin variants on interacting heads motif explain distinct hypertrophic and dilated cardiomyopathy phenotypes, Elife, Vol:6, ISSN:2050-084X

Whiffin N, Minikel E, Walsh R, et al., 2017, Using high-resolution variant frequencies to empower clinical genome interpretation, Genetics in Medicine, Vol:19, ISSN:1530-0366, Pages:1151-1158

Schafer S, de Marvao A, Adami E, et al., 2017, Titin-truncating variants affect heart function in disease cohorts and the general population, Nature Genetics, Vol:49, ISSN:1546-1718, Pages:46-53

Lek M, Karczewski KJ, Minikel EV, et al., 2016, Analysis of protein-coding genetic variation in 60,706 humans, Nature, Vol:536, ISSN:0028-0836, Pages:285-291

Walsh R, Thomson KL, Ware JS, et al., 2016, Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples, Genetics in Medicine, Vol:19, ISSN:1530-0366, Pages:192-203

Ware JS, Li J, Mazaika E, et al., 2016, Shared genetic etiology of peripartum and dilated cardiomyopathies, New England Journal of Medicine, Vol:374, ISSN:1533-4406, Pages:233-241

Homsy J, Zaidi S, Shen Y, et al., 2015, De novo mutations in congenital heart disease with neurodevelopmental and other birth defects, Science, Vol:350, ISSN:0036-8075, Pages:1262-1266

Roberts AM, Ware JS, Herman DS, et al., 2015, Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease, Science Translational Medicine, Vol:7, ISSN:1946-6234, Pages:270ra6-270ra6

McDermott-Roe C, Ye J, Ahmed R, et al., 2011, Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function, Nature, Vol:478, Pages:114-118

More Publications