Imperial College London

Dr Jake Baum

Faculty of Natural SciencesDepartment of Life Sciences

Reader in Parasite cell Biology
 
 
 
//

Contact

 

+44 (0)20 7594 5420jake.baum Website

 
 
//

Location

 

609Sir Alexander Fleming BuildingSouth Kensington Campus

//

Summary

 

Summary

Throughout its complex lifecycle the malaria parasites, from the genus Plasmodium, must traverse tissues and invade a diversity of host cells to ensure successful propagation of their lifecycle. Each lifecycle stage is exquisitely designed for cell movement, tissue targeting and host cell invasion, yet we still do not understand the basic mechanics of how the parasite motor produces force and translates this into powerful movement or cell penetration. Unlike all other eukaryotic cells, the malaria parasites rely on an internal actin-myosin motor, linked through to the outside world through secreted surface adhesins across which it literally glides.

Our lab is focused on reconstructing Plasmodium gliding motor function in vitro, its regulation and in a cellular context exploring how the core factors that control motility are distributed. Our work covers the spectrum of scales from single molecule through to whole cell, biochemistry through structural biology and cell biology and, since moving to Imperial, the mysterious world of biophysics.

Ultimately our goal is to break apart Plasmodium motility at every level to generate fundamental understanding into parasite biology and identify potential targets to stop the parasite dead in its tracks!

Publications

Journals

Baum J, Plasmodium MTRAP is essential for vacuole membrane disruption and host cell egress by malaria gametes, Cell Host & Microbe, ISSN:1934-6069

Koch M, Wright KE, Otto O, et al., 2017, Plasmodium falciparum erythrocyte-binding antigen 175 triggers a biophysical change in the red blood cell that facilitates invasion., Proc Natl Acad Sci U S A, Vol:114, Pages:4225-4230

Wong W, Bai XC, Sleebs BE, et al., 2017, Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis., Nat Microbiol, Vol:2

Bane KS, Lepper S, Kehrer J, et al., 2016, The Actin Filament-Binding Protein Coronin Regulates Motility in Plasmodium Sporozoites, Plos Pathogens, Vol:12, ISSN:1553-7366

Bargieri DY, Thiberge S, Tay CL, et al., 2016, Plasmodium Merozoite TRAP Family Protein Is Essential for Vacuole Membrane Disruption and Gamete Egress from Erythrocytes, Cell Host & Microbe, Vol:20, ISSN:1931-3128, Pages:618-630

More Publications