Imperial College London

DrJerryHeng

Faculty of EngineeringDepartment of Chemical Engineering

Reader in Particle Technology
 
 
 
//

Contact

 

+44 (0)20 7594 0784jerry.heng

 
 
//

Location

 

417AACE ExtensionSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Ngeow:2019:10.5254/rct.18.82626,
author = {Ngeow, YW and Chapman, AV and Heng, JYY and Williams, DR and Mathys, S and Hull, CD},
doi = {10.5254/rct.18.82626},
journal = {Rubber Chemistry and Technology},
pages = {237--262},
title = {Characterization of silica modified with silanes by using thermogravimetric analysis combined with infrared detection},
url = {http://dx.doi.org/10.5254/rct.18.82626},
volume = {92},
year = {2019}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Tire treads with reduced rolling resistance and increased wet grip can be achieved by coupling hydrophilic silica to hydrocarbon rubber by using an alkoxysilane. The silica surface was modified by reaction with a wide range of coupling and non-coupling silanes. The chemistry and extent of these silanizations were elucidated using thermogravimetric analysis (TGA) combined with infrared detection. The silane grafting efficiencies were typically 52–72%, but efficiencies were lower in the bulkier [3-(di-(tridecyloxypenta(ethyleneoxy))ethoxysilyl]propyl mercaptan. However, the silica surface coverage increases with increasing size of the silane. Grafting efficiencies were lower with higher silane loadings. In the TGA, ethoxy and methoxy groups are displaced from the grafted silanes mainly at moderate temperatures (up to about 495 °C) to form siloxane bridges. Over a similar temperature range, the weaker S–S bonds present in bis(3-triethoxysilylpropyl) tetrasulfide (TESPT)- or bis[3-(triethoxysilyl)propyl] disulfide (TESPD)-modified silica are cleaved, leading to weight losses from TESPT or TESPD bound at one end to the silica and from TESPT bound at both ends. The remaining weight losses from bound silanes occurred mainly at higher temperatures. In the commercial silanized silica Coupsil 8113, TGA indicates that about two of three ethoxy groups in each triethoxysilane were lost during the silanization process.
AU - Ngeow,YW
AU - Chapman,AV
AU - Heng,JYY
AU - Williams,DR
AU - Mathys,S
AU - Hull,CD
DO - 10.5254/rct.18.82626
EP - 262
PY - 2019///
SN - 0035-9475
SP - 237
TI - Characterization of silica modified with silanes by using thermogravimetric analysis combined with infrared detection
T2 - Rubber Chemistry and Technology
UR - http://dx.doi.org/10.5254/rct.18.82626
UR - http://hdl.handle.net/10044/1/69661
VL - 92
ER -