Imperial College London

ProfessorJesusGil

Faculty of MedicineInstitute of Clinical Sciences

Professor of Cell Proliferation
 
 
 
//

Contact

 

+44 (0)20 3313 8263jesus.gil

 
 
//

Location

 

CRB room 5005CRB (Clinical Research Building)Hammersmith Campus

//

Summary

 

Publications

Publication Type
Year
to

86 results found

Young HL, Rowling EJ, Bugatti M, Giurisato E, Luheshi N, Arozarena I, Acosta J-C, Kamarashev J, Frederick DT, Cooper ZA, Reuben A, Gil J, Flaherty KT, Wargo JA, Vermi W, Smith MP, Wellbrock C, Hurlstone Aet al., 2017, An adaptive signaling network in melanoma inflammatory niches confers tolerance to MAPK signaling inhibition., J Exp Med, Vol: 214, Pages: 1691-1710

Mitogen-activated protein kinase (MAPK) pathway antagonists induce profound clinical responses in advanced cutaneous melanoma, but complete remissions are frustrated by the development of acquired resistance. Before resistance emerges, adaptive responses establish a mutation-independent drug tolerance. Antagonizing these adaptive responses could improve drug effects, thereby thwarting the emergence of acquired resistance. In this study, we reveal that inflammatory niches consisting of tumor-associated macrophages and fibroblasts contribute to treatment tolerance through a cytokine-signaling network that involves macrophage-derived IL-1β and fibroblast-derived CXCR2 ligands. Fibroblasts require IL-1β to produce CXCR2 ligands, and loss of host IL-1R signaling in vivo reduces melanoma growth. In tumors from patients on treatment, signaling from inflammatory niches is amplified in the presence of MAPK inhibitors. Signaling from inflammatory niches counteracts combined BRAF/MEK (MAPK/extracellular signal-regulated kinase kinase) inhibitor treatment, and consequently, inhibiting IL-1R or CXCR2 signaling in vivo enhanced the efficacy of MAPK inhibitors. We conclude that melanoma inflammatory niches adapt to and confer drug tolerance toward BRAF and MEK inhibitors early during treatment.

JOURNAL ARTICLE

Adrados I, Larrasa-Alonso J, Galarreta A, Lopez-Antona I, Menendez C, Abad M, Gil J, Moreno-Bueno G, Palmero Iet al., 2016, The homeoprotein SIX1 controls cellular senescence through the regulation of p16INK4A and differentiation-related genes, ONCOGENE, Vol: 35, Pages: 3485-3494, ISSN: 0950-9232

JOURNAL ARTICLE

Apps JR, Jani N, Gonzalez-Meljem JM, Tossell K, Carroll T, Ungless MA, Gil J, Williams H, Jacques TS, Martinez-Barbera JPet al., 2016, Clusters of Nuclear Beta-Catenin Accumulating Cells Form Secretory Hubs in Adamantinomatous Craniopharyngioma, 205th Meeting of the Pathological-Society-of-Great-Britain-and-Ireland, Publisher: WILEY-BLACKWELL, Pages: S5-S5, ISSN: 0022-3417

CONFERENCE PAPER

Gallage S, Gil J, 2016, Mitochondrial Dysfunction Meets Senescence, TRENDS IN BIOCHEMICAL SCIENCES, Vol: 41, Pages: 207-209, ISSN: 0968-0004

JOURNAL ARTICLE

Georgilis A, Gil J, 2016, Controlling secretion to limit chemoresistance, GENES & DEVELOPMENT, Vol: 30, Pages: 1791-1792, ISSN: 0890-9369

JOURNAL ARTICLE

Gil J, Rodriguez T, 2016, Cancer: The Transforming Power of Cell Competition, CURRENT BIOLOGY, Vol: 26, Pages: R164-R166, ISSN: 0960-9822

JOURNAL ARTICLE

Gil J, Withers DJ, 2016, AGEING Out with the old, NATURE, Vol: 530, Pages: 164-165, ISSN: 0028-0836

JOURNAL ARTICLE

Guerrero A, Gil J, 2016, HMGB2 holds the key to the senescence-associated secretory phenotype., J Cell Biol, Vol: 215, Pages: 297-299

The senescence-associated secretory phenotype (SASP) is a hallmark of senescence with an important physiological impact, but how it is established is unclear. In this issue, Aird et al. (2016. J. Cell Biol. https://doi.org/10.1083/jcb.201608026) describe how chromatin-bound HMGB2 fine tunes SASP expression by avoiding heterochromatin spreading.

JOURNAL ARTICLE

Herranz N, Gil J, 2016, Mitochondria and senescence: new actors for an old play, EMBO JOURNAL, Vol: 35, Pages: 701-702, ISSN: 0261-4189

JOURNAL ARTICLE

Mellone M, Hanley CJ, Thirdborough S, Mellows T, Garcia E, Woo J, Tod J, Frampton S, Jenei V, Moutasim KA, Kabir TD, Brennan PA, Venturi G, Ford K, Herranz N, Lim KP, Clarke J, Lambert DW, Prime SS, Underwood TJ, Vijayanand P, Eliceiri KW, Woelk C, King EV, Gil J, Ottensmeier CH, Thomas GJet al., 2016, Induction of fibroblast senescence generates a non-fibrogenic myofibroblast phenotype that differentially impacts on cancer prognosis., Aging (Albany NY), Vol: 9, Pages: 114-132

Cancer-associated fibroblasts (CAF) remain a poorly characterized, heterogeneous cell population. Here we characterized two previously described tumor-promoting CAF sub-types, smooth muscle actin (SMA)-positive myofibroblasts and senescent fibroblasts, identifying a novel link between the two. Analysis of CAF cultured ex vivo, showed that senescent CAF are predominantly SMA-positive; this was confirmed by immunochemistry in head & neck (HNSCC) and esophageal (EAC) cancers. In vitro, we found that fibroblasts induced to senesce develop molecular, ultrastructural and contractile features typical of myofibroblasts and this is dependent on canonical TGF-β signaling. Similar to TGF-β1-generated myofibroblasts, these cells secrete soluble factors that promote tumor cell motility. However, RNA-sequencing revealed significant transcriptomic differences between the two SMA-positive CAF groups, particularly in genes associated with extracellular matrix (ECM) deposition and organization, which differentially promote tumor cell invasion. Notably, second harmonic generation imaging and bioinformatic analysis of SMA-positive human HNSCC and EAC showed that collagen fiber organization correlates with poor prognosis, indicating that heterogeneity within the SMA-positive CAF population differentially impacts on survival. These results show that non-fibrogenic, SMA-positive myofibroblasts can be directly generated through induction of fibroblast senescence and suggest that senescence and myofibroblast differentiation are closely linked processes.

JOURNAL ARTICLE

Tordella L, Khan S, Hohmeyer A, Banito A, Klotz S, Raguz S, Martin N, Dhamarlingam G, Carroll T, Meljem JMG, Deswal S, Martinez-Barbera JP, Garcia-Escudero R, Zuber J, Zender L, Gil Jet al., 2016, SWI/SNF regulates a transcriptional program that induces senescence to prevent liver cancer, GENES & DEVELOPMENT, Vol: 30, Pages: 2187-2198, ISSN: 0890-9369

JOURNAL ARTICLE

Wong CL, Innes A, Ma B, Gerrard G, Norziha ZA, Cheong SK, Leong CF, Bee PC, Sathar J, Lye SF, Foroni L, Aitman T, Liang L, Gil J, Laffan Met al., 2016, Differential Expression of Genes Associated with Oncogene-Induced Senescence and Senescence Associated Secretory Phenotype in the Absence of Differential Expression of High Molecular Risk Genes and Genes Associated with JAK-STAT Pathway in Sorted Cells of Patients with Polycythemia Vera and Primary Myelofibrosis, 58th Annual Meeting and Exposition of the American-Society-of-Hematology, Publisher: AMER SOC HEMATOLOGY, ISSN: 0006-4971

CONFERENCE PAPER

Esposito MT, Zhao L, Fung TK, Rane JK, Wilson A, Martin N, Gil J, Leung AY, Ashworth A, So CWEet al., 2015, 7Synthetic lethal targeting of oncogenic transcription factors in acute leukemia by PARP inhibitors, NATURE MEDICINE, Vol: 21, Pages: 1481-+, ISSN: 1078-8956

JOURNAL ARTICLE

Guerrero A, Iglesias C, Raguz S, Floridia E, Gil J, Pombo CM, Zalvide Jet al., 2015, The cerebral cavernous malformation 3 gene is necessary for senescence induction, AGING CELL, Vol: 14, Pages: 274-283, ISSN: 1474-9718

JOURNAL ARTICLE

Herranz N, Gallage S, Gil J, 2015, TORn about SASP regulation., Cell Cycle, Vol: 14, Pages: 3771-3772

JOURNAL ARTICLE

Herranz N, Gallage S, Mellone M, Wuestefeld T, Klotz S, Hanley CJ, Raguz S, Acosta JC, Innes AJ, Banito A, Georgilis A, Montoya A, Wolter K, Dharmalingam G, Faull P, Carroll T, Martinez-Barbera JP, Cutillas P, Reisinger F, Heikenwalder M, Miller RA, Withers D, Zender L, Thomas GJ, Gill Jet al., 2015, mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype, NATURE CELL BIOLOGY, Vol: 17, Pages: 1205-+, ISSN: 1465-7392

JOURNAL ARTICLE

Herranz N, Gallage S, Mellone M, Wuestefeld T, Klotz S, Hanley CJ, Raguz S, Acosta JC, Innes AJ, Banito A, Georgilis A, Montoya A, Wolter K, Dharmalingam G, Faull P, Carroll T, Martínez-Barbera JP, Cutillas P, Reisinger F, Heikenwalder M, Miller RA, Withers D, Zender L, Thomas GJ, Gil Jet al., 2015, Erratum: mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype., Nat Cell Biol, Vol: 17

JOURNAL ARTICLE

Lin M-L, Patel H, Remenyi J, Banerji CRS, Lai C-F, Periyasamy M, Lombardo Y, Busonero C, Ottaviani S, Passey A, Quinlan PR, Purdie CA, Jordan LB, Thompson AM, Finn RS, Rueda OM, Caldas C, Gil J, Coombes RC, Fuller-Pace FV, Teschendorff AE, Buluwela L, Ali Set al., 2015, Expression profiling of nuclear receptors in breast cancer identifies TLX as a mediator of growth and invasion in triple-negative breast cancer, ONCOTARGET, Vol: 6, Pages: 21685-21703, ISSN: 1949-2553

JOURNAL ARTICLE

O'Loghlen A, Brookes S, Martin N, Rapisarda V, Peters G, Gil Jet al., 2015, CBX7 and miR-9 are part of an autoregulatory loop controlling p16(INK4a), AGING CELL, Vol: 14, Pages: 1113-1121, ISSN: 1474-9718

JOURNAL ARTICLE

O'Loghlen A, Martin N, Krusche B, Pemberton H, Alonso MM, Chandler H, Brookes S, Parrinello S, Peters G, Gil Jet al., 2015, The nuclear receptor NR2E1/TLX controls senescence, ONCOGENE, Vol: 34, Pages: 4069-4077, ISSN: 0950-9232

JOURNAL ARTICLE

Ozmadenci D, Feraud O, Markossian S, Kress E, Ducarouge B, Gibert B, Ge J, Durand I, Gadot N, Plateroti M, Bennaceur-Griscelli A, Scoazec J-Y, Gil J, Deng H, Bernet A, Mehlen P, Lavial Fet al., 2015, Netrin-1 regulates somatic cell reprogramming and pluripotency maintenance, NATURE COMMUNICATIONS, Vol: 6, ISSN: 2041-1723

JOURNAL ARTICLE

Gallage S, Gil J, 2014, Primary cilia and senescence: A sensitive issue, CELL CYCLE, Vol: 13, Pages: 2653-2654, ISSN: 1538-4101

JOURNAL ARTICLE

Gil J, O'Loghlen A, 2014, PRC1 complex diversity: where is it taking us?, TRENDS IN CELL BIOLOGY, Vol: 24, Pages: 632-641, ISSN: 0962-8924

JOURNAL ARTICLE

Martin N, Beach D, Gill J, 2014, Ageing as developmental decay: insights from p16(INK4a), TRENDS IN MOLECULAR MEDICINE, Vol: 20, Pages: 667-674, ISSN: 1471-4914

JOURNAL ARTICLE

Santos J, Gil J, 2014, TRIM28/KAP1 regulates senescence, IMMUNOLOGY LETTERS, Vol: 162, Pages: 281-289, ISSN: 0165-2478

JOURNAL ARTICLE

Vizioli MG, Santos J, Pilotti S, Mazzoni M, Anania MC, Miranda C, Pagliardini S, Pierotti MA, Gil J, Greco Aet al., 2014, Oncogenic RAS-induced senescence in human primary thyrocytes: molecular effectors and inflammatory secretome involved, ONCOTARGET, Vol: 5, Pages: 8270-8283, ISSN: 1949-2553

JOURNAL ARTICLE

Warboys CM, de Luca A, Amini N, Luong L, Duckles H, Hsiao S, White A, Biswas S, Khamis R, Chong CK, Cheung W-M, Sherwin SJ, Bennett MR, Gil J, Mason JC, Haskard DO, Evans PCet al., 2014, Disturbed Flow Promotes Endothelial Senescence via a p53-Dependent Pathway, ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, Vol: 34, Pages: 985-995, ISSN: 1079-5642

JOURNAL ARTICLE

Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, Athineos D, Kang T-W, Lasitschka F, Andrulis M, Pascual G, Morris KJ, Khan S, Jin H, Dharmalingam G, Snijders AP, Carroll T, Capper D, Pritchard C, Inman GJ, Longerich T, Sansom OJ, Aznar Benitah S, Zender L, Gil Jet al., 2013, A complex secretory program orchestrated by the inflammasome controls paracrine senescence, NATURE CELL BIOLOGY, Vol: 15, Pages: 978-U221, ISSN: 1465-7392

JOURNAL ARTICLE

Acosta JC, Snijders AP, Gil J, 2013, Unbiased characterization of the senescence-associated secretome using SILAC-based quantitative proteomics., Methods Mol Biol, Vol: 965, Pages: 175-184

Approaches based on the combination of mass spectrometry (MS) and quantitative methods have the potential to generate unbiased, thorough proteomic catalogues. In particular, stable isotope labeling with amino acid in cell culture (SILAC) has been used to perform highly accurate quantitative comparisons between the proteomes of different cell lines, treatments, or even animal models. Here, we describe how we have taken advantage of SILAC-based quantitative proteomics and inducible cell systems of oncogene-induced senescence to make an unbiased characterization of the senescence-associated secretome. This approach could be used to analyze the effect of diverse molecules on the senescence secretome or to catalogue unrelated secretomes.

JOURNAL ARTICLE

Angeles Marques-Torrejon M, Porlan E, Banito A, Gomez-Ibarlucea E, Lopez-Contreras AJ, Fernandez-Capetillo O, Vidal A, Gil J, Torres J, Farinas Iet al., 2013, Cyclin-Dependent Kinase Inhibitor p21 Controls Adult Neural Stem Cell Expansion by Regulating Sox2 Gene Expression, CELL STEM CELL, Vol: 12, Pages: 88-100, ISSN: 1934-5909

JOURNAL ARTICLE

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00485344&limit=30&person=true