Imperial College London

Dr John S Tregoning

Faculty of MedicineDepartment of Infectious Disease

Professor in Vaccine Immunology
 
 
 
//

Contact

 

john.tregoning Website

 
 
//

Location

 

456 (Shattock Group)Wright Fleming WingSt Mary's Campus

//

Summary

 

Publications

Publication Type
Year
to

134 results found

Groves H, Higham S, Moffatt M, Cox M, Tregoning Jet al., 2019, Respiratory viral infection alters the gut microbiota by inducing inappetence, Publisher: bioRxiv

Abstract The gut microbiota has an important role in health and disease. Respiratory viral infections are extremely common but their impact on the composition and function of the gut microbiota is poorly understood. We previously observed a significant change in the gut microbiota after viral lung infection. Here we show that weight loss during Respiratory Syncytial Virus (RSV) or influenza virus infection was due to decreased food consumption, and that fasting mice independently of infection altered gut microbiota composition. While the acute phase TNF-α response drove early weight loss and inappetence during RSV infection, this was not sufficient to induce changes in the gut microbiota. However, depleting CD8 + cells increased food intake and prevented weight loss resulting in a reversal of the gut microbiota changes normally observed during RSV infection. Viral infection also led to changes in the faecal gut metabolome during RSV infection, with a significant shift in lipid metabolism. Sphingolipids, poly-unsaturated fatty acids (PUFAs) and the short-chain fatty acid (SCFA) valerate all increased in abundance in the faecal metabolome following RSV infection. Whether this, and the impact of infection-induced anorexia on the gut microbiota, are part of a protective, anti-inflammatory response during respiratory viral infections remains to be determined.

Working paper

Smith SE, Busse DC, Binter Š, Weston S, Diaz Soria C, Laksono BM, Clare S, Van Nieuwkoop S, Van den Hoogen BG, Clement M, Marsden M, Humphreys IR, Marsh M, de Swart RL, Wash RS, Tregoning JS, Kellam Pet al., 2019, Interferon-induced transmembrane protein 1 restricts replication of virus that enter cells via the plasma membrane, Journal of Virology, Vol: 93, ISSN: 1098-5514

The acute anti-viral response is mediated by a family of interferon stimulated genes (ISG), providing cell-intrinsic immunity. Mutations in genes encoding these proteins are often associated with increased susceptibility to viral infections. One family of ISGs with anti-viral function are the interferon-inducible transmembrane proteins (IFITM) of which IFITM3 has been studied extensively. By contrast, IFITM1 has not been studied in detail. Since IFITM1 can localise to the plasma membrane, we investigated its function with a range of enveloped viruses thought to infect cells by fusion with the plasma membrane. Overexpression of IFITM1 prevented infection by a number of Paramyxoviridae and Pneumoviridae, including Respiratory Syncytial Virus (RSV), mumps virus and human metapneumovirus (HMPV). IFITM1 also restricted infection with an enveloped DNA virus that can enter via the plasma membrane, herpes simplex virus 1 (HSV-1). To test the importance of plasma membrane localisation for IFITM1 function, we identified blocks of amino acids in the conserved intracellular loop (CIL) domain that altered the subcellular localisation of the protein and reduced anti-viral activity. Screening published datasets, twelve rare non-synonymous SNPs were identified in human IFITM1, some of which are in the CIL domain. Using an Ifitm1-/- knock-out mouse we show that RSV infection was more severe, thereby extending the range of viruses restricted in vivo by IFITM proteins and suggesting overall that IFITM1 is broadly anti-viral and this anti-viral function is associated with cell surface localisation.IMPORTANCE Host susceptibility to viral infection is multifactorial, but early control of viruses not previously encountered is predominantly mediated by the interferon stimulated gene (ISG) family. There are upwards of 300 of these genes, the majority of which do not have a clearly defined function or mechanism of action. The cellular location of these proteins may have an important effect o

Journal article

Lindsey BB, Singanayagam A, Tregoning JS, De Silva T, Barclay Wet al., 2019, The impact of an updated pandemic H1N1 strain on shedding and immunogenicity to Russian-backbone live attenuated influenza vaccine among children in The Gambia: an open-label, observational, phase 4 study, Lancet Respiratory Medicine, ISSN: 2213-2600

Background: Poor efficacy and effectiveness of thepandemic H1N1 (pH1N1) component inlive attenuated influenza vaccine (LAIV)has been demonstrated in several studies.The reasons for this are unclear, butmay be due toimpairedreplicative fitness of pH1N1 A/California/07/2009-like (Cal09) strains. The aim of this study was to establish whether an updated pH1N1 strain in the Russian-backbone trivalent LAIV resulted in greater shedding and immunogenicitycompared to Cal09.Methods: In an open-label, prospective,observational,phase 4study, we evaluated the impact of updating the pH1N1 component in the WHO prequalified Russian-backbone trivalent LAIV from Cal09in 2016-17(n=118) to an A/Michigan/45/2015-like strain (A/17/New York/15/5364, NY15) in 2017-18(n=126),on shedding and immunogenicity in Gambian children aged 2-4 years old.The study was nested within a randomised controlled trial investigating LAIV-microbiome interactions (ClinicalTrials.gov NCT02972957). Findings: Cal09 showed impairednasopharyngeal shedding(13.6%children shedding at day 2 post-LAIV)compared to H3N2(45.8%)and influenza B(80.5%), along with sub-optimal serum antibody(5.1%seroconversion)and T-cell responses(40.5% CD4+IFN-g+ and/or CD4+IL-2+responders). Following the switch to NY15, a significant increase in pH1N1 shedding(63.5%)was seen, along with improvements in seroconversion(19.1%)and influenza-specific CD4+ T-3cell responses(65.7%). The improvement in pH1N1 seroconversion with NY15 was even greater in children seronegative at baseline(37.5% vs. 7.6%). Persistent shedding today 7was independently associated with both seroconversionand CD4+ T cell responsein multivariable logistic regression. Interpretation:The pH1N1 component switch may have overcome problems in prior LAIV formulations.LAIV effectiveness against pH1N1 shouldtherefore improve in upcoming influenza seasons. Our dataalso highlightthe importance of evaluat

Journal article

Young DF, Wignall-Fleming EB, Busse DC, Pickin MJ, Hankinson J, Randall EM, Tavendale A, Davison AJ, Lamont D, Tregoning JS, Goodbourn S, Randall REet al., 2019, The switch between acute and persistent paramyxovirus infection caused by single amino acid substitutions in the RNA polymerase P subunit, PLoS Pathogens, Vol: 15, ISSN: 1553-7366

Paramyxoviruses can establish persistent infections both in vitro and in vivo, some of which lead to chronic disease. However, little is known about the molecular events that contribute to the establishment of persistent infections by RNA viruses. Using parainfluenza virus type 5 (PIV5) as a model we show that phosphorylation of the P protein, which is a key component of the viral RNA polymerase complex, determines whether or not viral transcription and replication becomes repressed at late times after infection. If the virus becomes repressed, persistence is established, but if not, the infected cells die. We found that single amino acid changes at various positions within the P protein switched the infection phenotype from lytic to persistent. Lytic variants replicated to higher titres in mice than persistent variants and caused greater infiltration of immune cells into infected lungs but were cleared more rapidly. We propose that during the acute phases of viral infection in vivo, lytic variants of PIV5 will be selected but, as the adaptive immune response develops, variants in which viral replication can be repressed will be selected, leading to the establishment of prolonged, persistent infections. We suggest that similar selection processes may operate for other RNA viruses.

Journal article

Zhong Z, Haltalli M, Holder B, Rice T, Donaldson B, O'Driscoll M, Le-Doare K, Kampmann B, Tregoning JSet al., 2019, The impact of timing of maternal influenza immunisation on infant antibody levels at birth., Clinical and Experimental Immunology, Vol: 195, Pages: 139-152, ISSN: 1365-2249

Pregnant women and infants are at an increased risk of severe disease after influenza infection. Maternal immunisation is a potent tool to protect both of these at-risk groups. Whilst the primary aim of maternal influenza vaccination is to protect the mother, a secondary benefit is the transfer of protective antibodies to the infant. A recent study using the tetanus, diphtheria and acellular pertussis (Tdap) vaccine indicated that children born to mothers immunised in the second trimester of pregnancy had the highest antibody titres compared to children immunised in the third trimester. The aim of the current study was to investigate how timing of maternal influenza immunisation impacts infant antibody levels at birth. Antibody titres were assessed in maternal and cord blood samples by both IgG-binding ELISA and haemagglutination inhibition assay (HAI). Antibody titres to the H1N1 component were significantly higher in infants born to mothers vaccinated in either the second or third trimesters than infants born to unvaccinated mothers. HAI levels in the infant were significantly lower when maternal immunisation was performed less than four weeks before birth. These studies confirm that immunisation during pregnancy increases the antibody titre in infants. Importantly antibody levels in cord blood were significantly higher when mother was vaccinated in either trimester two or three, though titres were significantly lower if the mother was immunised less than 4 weeks before birth. Based on this data, seasonal influenza vaccination should continue to be given in pregnancy as soon as it becomes available.

Journal article

Tregoning JS, Mallia P, 2019, Modulating airway glucose to reduce respiratory infections, Expert Review of Respiratory Medicine, Vol: 13, Pages: 121-124, ISSN: 1747-6348

Journal article

Farne H, Groves H, Gill S, stokes I, Mccolloch S, karoly E, Trujillo-Torralbo M, Johnston S, Mallia P, Tregoning Jet al., 2018, Comparative metabolomic sampling of upper and lower airways by four different methods to identify biochemicals that may support bacterial growth, Frontiers in Cellular and Infection Microbiology, Vol: 8, ISSN: 2235-2988

Bacteria need nutrients from the host environment to survive, yet we know little about which biochemicals are present in the airways (the metabolome), which of these biochemicals are essential for bacterial growth and how they change with airway disease. The aims of this pilot study were to develop and compare methodologies for sampling the upper and lower airway metabolomes and to identify biochemicals present in the airways that could potentially support bacterial growth. Eight healthy human volunteers were sampled by four methods: two standard approaches - nasal lavage and induced sputum, and two using a novel platform, synthetic adsorptive matrix (SAM) strips—nasosorption and bronchosorption. Collected samples were analyzed by Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS). Five hundred and eighty-one biochemicals were recovered from the airways belonging to a range of metabolomic super-pathways. We observed significant differences between the sampling approaches. Significantly more biochemicals were recovered when SAM strips were used, compared to standard sampling techniques. A range of biochemicals that could support bacterial growth were detected in the different samples. This work demonstrates for the first time that SAM strips are a highly effective method for sampling the airway metabolome. This work will assist further studies to understand how changes in the airway metabolome affect bacterial infection in patients with underlying airway disease.

Journal article

Badamchi-Zadeh A, Moynihan KD, Larocca RA, Aid M, Provine NM, Iampietro MJ, Kinnear E, Penaloza-MacMaster P, Abbink P, Blass E, Tregoning JS, Irvine DJ, Barouch DHet al., 2018, Combined HDAC and BET inhibition enhances melanoma vaccine immunogenicity and efficacy, Journal of Immunology, Vol: 201, Pages: 2744-2752, ISSN: 1550-6606

The combined inhibition of histone deacetylases (HDAC) and the proteins of the bromodomain and extraterminal (BET) family have recently shown therapeutic efficacy against melanoma, pancreatic ductal adenocarcinoma, testicular, and lymphoma cancers in murine studies. However, in such studies, the role of the immune system in therapeutically controlling these cancers has not been explored. We sought to investigate the effect of the HDAC inhibitor romidepsin (RMD) and the BET inhibitor IBET151, both singly and in combination, on vaccine-elicited immune responses. C57BL/6 mice were immunized with differing vaccine systems (adenoviral, protein) in prime-boost regimens under treatment with RMD, IBET151, or RMD+IBET151. The combined administration of RMD+IBET151 during vaccination resulted in a significant increase in the frequency and number of Ag-specific CD8+ T cells. RMD+IBET151 treatment significantly increased the frequency of vaccine-elicited IFN-γ+ splenic CD8+ T cells and conferred superior therapeutic and prophylactic protection against B16-OVA melanoma. RNA sequencing analyses revealed strong transcriptional similarity between RMD+IBET151 and untreated Ag-specific CD8+ T cells except in apoptosis and IL-6 signaling–related genes that were differentially expressed. Serum IL-6 was significantly increased in vivo following RMD+IBET151 treatment, with recombinant IL-6 administration replicating the effect of RMD+IBET151 treatment on vaccine-elicited CD8+ T cell responses. IL-6 sufficiency for protection was not assessed. Combined HDAC and BET inhibition resulted in greater vaccine-elicited CD8+ T cell responses and enhanced therapeutic and prophylactic protection against B16-OVA melanoma. Increased IL-6 production and the differential expression of pro- and anti-apoptotic genes following RMD+IBET151 treatment are likely contributors to the enhanced cancer vaccine responses.

Journal article

Tregoning JS, Mallia P, Webber J, Gill SK, Trujillo-Torralbo, Calderazzo MA, Finney L, Bakhsoliani E, Farne H, Singanayagam A, Footitt J, Hewitt R, Kebadze, Aniscenko J, Padmanaban V, Molyneaux PL, Adcock, Barnes PJ, Ito K, Elkin SL, Kon OM, Cookson WO, MOffatt MF, Johnston SLet al., 2018, Role of airway glucose in bacterial infections in chronic obstructive pulmonary disease, Journal of Allergy and Clinical Immunology, Vol: 142, Pages: 815-823.e6, ISSN: 0091-6749

BackgroundPatients with chronic obstructive pulmonary disease (COPD) have increased susceptibility to respiratory tract infection, which contributes to disease progression and mortality, but mechanisms of increased susceptibility to infection remain unclear.ObjectivesThe aim of this study was to determine whether glucose concentrations were increased in airway samples (nasal lavage fluid, sputum, and bronchoalveolar lavage fluid) from patients with stable COPD and to determine the effects of viral infection on sputum glucose concentrations and how airway glucose concentrations relate to bacterial infection.MethodsWe measured glucose concentrations in airway samples collected from patients with stable COPD and smokers and nonsmokers with normal lung function. Glucose concentrations were measured in patients with experimentally induced COPD exacerbations, and these results were validated in patients with naturally acquired COPD exacerbations. Relationships between sputum glucose concentrations, inflammatory markers, and bacterial load were examined.ResultsSputum glucose concentrations were significantly higher in patients with stable COPD compared with those in control subjects without COPD. In both experimental virus-induced and naturally acquired COPD exacerbations, sputum and nasal lavage fluid glucose concentrations were increased over baseline values. There were significant correlations between sputum glucose concentrations and sputum inflammatory markers, viral load, and bacterial load. Airway samples with higher glucose concentrations supported more Pseudomonas aeruginosa growth in vitro.ConclusionsAirway glucose concentrations are increased in patients with stable COPD and further increased during COPD exacerbations. Increased airway glucose concentrations might contribute to bacterial infections in both patients with stable and those with exacerbated COPD. This has important implications for the development of nonantibiotic therapeutic strategies for the prev

Journal article

Tregoning J, 2018, How will you judge me if not by impact factor?, Nature, Vol: 558, Pages: 345-345, ISSN: 0028-0836

Journal article

Groves HT, Cuthbertson L, James P, Moffatt MF, Cox MJ, Tregoning JSet al., 2018, Respiratory Disease following Viral Lung Infection Alters the Murine Gut Microbiota, FRONTIERS IN IMMUNOLOGY, Vol: 9, ISSN: 1664-3224

Alterations in the composition of the gut microbiota have profound effects on human health. Consequently, there is great interest in identifying, characterizing, and understanding factors that initiate these changes. Despite their high prevalence, studies have only recently begun to investigate how viral lung infections have an impact on the gut microbiota. There is also considerable interest in whether the gut microbiota could be manipulated during vaccination to improve efficacy. In this highly controlled study, we aimed to establish the effect of viral lung infection on gut microbiota composition and the gut environment using mouse models of common respiratory pathogens respiratory syncytial virus (RSV) and influenza virus. This was then compared to the effect of live attenuated influenza virus (LAIV) vaccination. Both RSV and influenza virus infection resulted in significantly altered gut microbiota diversity, with an increase in Bacteroidetes and a concomitant decrease in Firmicutes phyla abundance. Although the increase in the Bacteroidetes phylum was consistent across several experiments, differences were observed at the family and operational taxonomic unit level. This suggests a change in gut conditions after viral lung infection that favors Bacteroidetes outgrowth but not individual families. No change in gut microbiota composition was observed after LAIV vaccination, suggesting that the driver of gut microbiota change is specific to live viral infection. Viral lung infections also resulted in an increase in fecal lipocalin-2, suggesting low-grade gut inflammation, and colonic Muc5ac levels. Owing to the important role that mucus plays in the gut environment, this may explain the changes in microbiota composition observed. This study demonstrates that the gut microbiota and the gut environment are altered following viral lung infections and that these changes are not observed during vaccination. Whether increased mucin levels and gut inflammation drive, or

Journal article

Groves HT, McDonald JU, Langat P, Kinnear E, Kellam P, McCauley J, Ellis J, Thompson C, Elderfield R, Parker L, Barclay W, Tregoning JSet al., 2018, Mouse Models of Influenza Infection with Circulating Strains to Test Seasonal Vaccine Efficacy, Frontiers in Immunology, Vol: 9, ISSN: 1664-3224

Influenza virus infection is a significant cause of morbidity and mortality worldwide. The surface antigens of influenza virus change over time blunting both naturally acquired and vaccine induced adaptive immune protection. Viral antigenic drift is a major contributing factor to both the spread and disease burden of influenza. The aim of this study was to develop better infection models using clinically relevant, influenza strains to test vaccine induced protection. CB6F1 mice were infected with a range of influenza viruses and disease, inflammation, cell influx, and viral load were characterized after infection. Infection with circulating H1N1 and representative influenza B viruses induced a dose-dependent disease response; however, a recent seasonal H3N2 virus did not cause any disease in mice, even at high titers. Viral infection led to recoverable virus, detectable both by plaque assay and RNA quantification after infection, and increased upper airway inflammation on day 7 after infection comprised largely of CD8 T cells. Having established seasonal infection models, mice were immunized with seasonal inactivated vaccine and responses were compared to matched and mismatched challenge strains. While the H1N1 subtype strain recommended for vaccine use has remained constant in the seven seasons between 2010 and 2016, the circulating strain of H1N1 influenza (2009 pandemic subtype) has drifted both genetically and antigenically since 2009. To investigate the effect of this observed drift on vaccine induced protection, mice were immunized with antigens from A/California/7/2009 (H1N1) and challenged with H1N1 subtype viruses recovered from 2009, 2010, or 2015. Vaccination with A/California/7/2009 antigens protected against infection with either the 2009 or 2010 strains, but was less effective against the 2015 strain. This observed reduction in protection suggests that mouse models of influenza virus vaccination and infection can be used as an additional tool to predic

Journal article

Tregoning JS, Russell RF, Kinnear E, 2018, Adjuvanted influenza vaccines, Human Vaccines and Immunotherapeutics, Vol: 14, Pages: 550-564, ISSN: 2164-5515

In spite of current influenza vaccines being immunogenic, evolution of the influenza virus can reduce efficacy and so influenza remains a major threat to public health. One approach to improve influenza vaccines is to include adjuvants; substances that boost the immune response. Adjuvants are particularly beneficial for influenza vaccines administered during a pandemic when a rapid response is required or for use in patients with impaired immune responses, such as infants and the elderly. This review outlines the current use of adjuvants in human influenza vaccines, including what they are, why they are used and what is known of their mechanism of action. To date, six adjuvants have been used in licensed human vaccines: Alum, MF59, AS03, AF03, virosomes and heat labile enterotoxin (LT). In general these adjuvants are safe and well tolerated, but there have been some rare adverse events when adjuvanted vaccines are used at a population level that may discourage the inclusion of adjuvants in influenza vaccines, for example the association of LT with Bell's Palsy. Improved understanding about the mechanisms of the immune response to vaccination and infection has led to advances in adjuvant technology and we describe the experimental adjuvants that have been tested in clinical trials for influenza but have not yet progressed to licensure. Adjuvants alone are not sufficient to improve influenza vaccine efficacy because they do not address the underlying problem of mismatches between circulating virus and the vaccine. However, they may contribute to improved efficacy of next-generation influenza vaccines and will most likely play a role in the development of effective universal influenza vaccines, though what that role will be remains to be seen.

Journal article

Tregoning J, 2018, From parade ground to PI., Science, Vol: 359, Pages: 362-362

Journal article

Vogel AB, Lambert L, Kinnear E, Busse D, Erbar S, Reuter KC, Wicke L, Perkovic M, Beissert T, Haas H, Reece ST, Sahin U, Tregoning JSet al., 2017, Self-Amplifying RNA Vaccines Give Equivalent Protection against Influenza to mRNA Vaccines but at Much Lower Doses., Molecular Therapy, Vol: 26, Pages: 446-455, ISSN: 1525-0016

New vaccine platforms are needed to address the time gap between pathogen emergence and vaccine licensure. RNA-based vaccines are an attractive candidate for this role: they are safe, are produced cell free, and can be rapidly generated in response to pathogen emergence. Two RNA vaccine platforms are available: synthetic mRNA molecules encoding only the antigen of interest and self-amplifying RNA (sa-RNA). sa-RNA is virally derived and encodes both the antigen of interest and proteins enabling RNA vaccine replication. Both platforms have been shown to induce an immune response, but it is not clear which approach is optimal. In the current studies, we compared synthetic mRNA and sa-RNA expressing influenza virus hemagglutinin. Both platforms were protective, but equivalent levels of protection were achieved using 1.25 μg sa-RNA compared to 80 μg mRNA (64-fold less material). Having determined that sa-RNA was more effective than mRNA, we tested hemagglutinin from three strains of influenza H1N1, H3N2 (X31), and B (Massachusetts) as sa-RNA vaccines, and all protected against challenge infection. When sa-RNA was combined in a trivalent formulation, it protected against sequential H1N1 and H3N2 challenges. From this we conclude that sa-RNA is a promising platform for vaccines against viral diseases.

Journal article

Fischetti L, Zhong Z, Pinder CL, Tregoning JS, Shattock RJet al., 2017, The synergistic effects of combining TLR ligand based adjuvants on the cytokine response are dependent upon p38/JNK signalling., Cytokine, Vol: 99, Pages: 287-296, ISSN: 1043-4666

Toll like receptor (TLR) ligands are important adjuvant candidates, causing antigen presenting cells to release inflammatory mediators, leading to the recruitment and activation of other leukocytes. The aim of this study was to define the response of human blood derived dendritic cells and macrophages to three TLR ligands acting singly or in combination, Poly I:C (TLR3), GLA (TLR4) and R848 (TLR7/8). Combinations of TLR agonists have been shown to have a synergistic effect on individual cytokines, here we look at the global inflammatory response measuring both cytokines and chemokines. Using a custom Luminex assay we saw dose responses in several mediators including CCL3 (MIP1α), IL-1α, IL-1β, IL-12, CXCL10 (IP-10) and IL-6, all of which were significantly increased by the combination of R848 and GLA, even when low dose GLA was added. The synergistic effect was inhibited by specific MAP kinase inhibitors blocking the kinases p38 and JNK but not MEK1. Combining TLR adjuvants also had a synergistic effect on cytokine responses in human mucosal tissue explants. From this we conclude that the combination of R848 and GLA potentiates the inflammatory profile of antigen presenting cells. Since the pattern of inflammatory mediators released can alter the quality and quantity of the adaptive immune response to vaccination, this study informs vaccine adjuvant design.

Journal article

de Silva TI, Gould V, Mohammed NI, Cope A, Meijer A, Zutt I, Reimerink J, Kampmann B, Hoschler K, Zambon M, Tregoning JSet al., 2017, Comparison of mucosal lining fluid sampling methods and influenza-specific IgA detection assays for use in human studies of influenza immunity, Journal of Immunological Methods, Vol: 449, Pages: 1-6, ISSN: 0022-1759

We need greater understanding of the mechanisms underlying protection against influenza virus to develop more effective vaccines. To do this, we need better, more reproducible methods of sampling the nasal mucosa. The aim of the current study was to compare levels of influenza virus A subtype-specific IgA collected using three different methods of nasal sampling. Samples were collected from healthy adult volunteers before and after LAIV immunization by nasal wash, flocked swabs and Synthetic Absorptive Matrix (SAM) strips. Influenza A virus subtype-specific IgA levels were measured by haemagglutinin binding ELISA or haemagglutinin binding microarray and the functional response was assessed by microneutralization. Nasosorption using SAM strips lead to the recovery of a more concentrated sample of material, with a significantly higher level of total and influenza H1-specific IgA. However, an equivalent percentage of specific IgA was observed with all sampling methods when normalized to the total IgA. Responses measured using a recently developed antibody microarray platform, which allows evaluation of binding to multiple influenza strains simultaneously with small sample volumes, were compared to ELISA. There was a good correlation between ELISA and microarray values. Material recovered from SAM strips was weakly neutralizing when used in an in vitro assay, with a modest correlation between the level of IgA measured by ELISA and neutralization, but a greater correlation between microarray-measured IgA and neutralizing activity. In conclusion we have tested three different methods of nasal sampling and show that flocked swabs and novel SAM strips are appropriate alternatives to traditional nasal washes for assessment of mucosal influenza humoral immunity.

Journal article

Kinnear E, Lambert L, McDonald JU, Cheeseman HM, Caproni LJ, Tregoning JSet al., 2017, Airway T cells protect against RSV infection in the absence of antibody, Mucosal Immunology, Vol: 11, Pages: 249-256, ISSN: 1933-0219

Tissue resident memory T (Trm) cells act as sentinels and early responders to infection. Respiratory syncytial virus (RSV)-specific Trm cells have been detected in the lungs after human RSV infection, but whether they have a protective role is unknown. To dissect the protective function of Trm cells, BALB/c mice were infected with RSV; infected mice developed antigen-specific CD8(+) Trm cells (CD103(+)/CD69(+)) in the lungs and airways. Intranasally transferring cells from the airways of previously infected animals to naïve animals reduced weight loss on infection in the recipient mice. Transfer of airway CD8 cells led to reduced disease and viral load and increased interferon-γ in the airways of recipient mice, while CD4 transfer reduced tumor necrosis factor-α in the airways. Because DNA vaccines induce a systemic T-cell response, we compared vaccination with infection for the effect of memory CD8 cells generated in different compartments. Intramuscular DNA immunization induced RSV-specific CD8 T cells, but they were immunopathogenic and not protective. Notably, there was a marked difference in the induction of Trm cells; infection but not immunization induced antigen-specific Trm cells in a range of tissues. These findings demonstrate a protective role for airway CD8 against RSV and support the need for vaccines to induce antigen-specific airway cells.Mucosal Immunology advance online publication, 24 May 2017; doi:10.1038/mi.2017.46.

Journal article

Gould VMW, Francis JN, Anderson KJ, Georges B, Cope AV, Tregoning JSet al., 2017, Nasal IgA provides protection against human influenza challenge in volunteers with low serum influenza antibody titre, Frontiers in Microbiology, Vol: 8, ISSN: 1664-302X

In spite of there being a number of vaccines, influenza remains a significant global cause of morbidity and mortality. Understanding more about natural and vaccine induced immune protection against influenza infection would help to develop better vaccines. Virus specific IgG is a known correlate of protection, but other factors may help to reduce viral load or disease severity, for example IgA. In the current study we measured influenza specific responses in a controlled human infection model using influenza A/California/2009 (H1N1) as the challenge agent. Volunteers were pre-selected with low haemagglutination inhibition (HAI) titres in order to ensure a higher proportion of infection; this allowed us to explore the role of other immune correlates. In spite of HAI being uniformly low, there were variable levels of H1N1 specific IgG and IgA prior to infection. There was also a range of disease severity in volunteers allowing us to compare whether differences in systemic and local H1N1 specific IgG and IgA prior to infection affected disease outcome. H1N1 specific IgG level before challenge did not correlate with protection, probably due to the pre-screening for individuals with low HAI. However, the length of time infectious virus was recovered from the nose was reduced in patients with higher pre-existing H1N1 influenza specific nasal IgA or serum IgA. Therefore, IgA contributes to protection against influenza and should be targeted in vaccines.

Journal article

McDonald JU, Zhong Z, Groves HT, Tregoning JSet al., 2017, Inflammatory responses to influenza vaccination at the extremes of age., Immunology, Vol: 151, Pages: 451-463, ISSN: 0019-2805

Age affects the immune response to vaccination, with individuals at the extremes of age responding poorly. The initial inflammatory response to antigenic materials shapes the subsequent adaptive response and so understanding is required about the effect of age on the profile of acute inflammatory mediators. In this study we measured the local and systemic inflammatory response after influenza vaccination or infection in neonatal, young adult and aged mice. Mice were immunized intramuscularly with inactivated influenza vaccine with and without the adjuvant MF59 and then challenged with H1N1 influenza. Age was the major factor affecting the inflammatory profile after vaccination: neonatal mice had more interleukin-1α (IL-1α), C-reactive protein (CRP) and granulocyte-macrophage colony-stimulating factor (GMCSF), young adults more tumour necrosis factor-α (TNF), and elderly mice more interleukin-1 receptor antagonist (IL-1RA), IL-2RA and interferon-γ-induced protein 10 (IP10). Notably the addition of MF59 induced IL-5, granulocyte colony-stimulating factor (G-CSF), Keratinocyte Chemotractant (KC) and monocyte chemoattractant protein 1 (MCP1) in all ages of animals and levels of these cytokines correlated with antibody responses. Age also had an impact on the efficacy of vaccination: neonatal and young adult mice were protected against challenge, but aged mice were not. There were striking differences in the localization of the cytokine response depending on the route of exposure: vaccination led to a high serum response whereas intranasal infection led to a low serum response but a high lung response. In conclusion, we demonstrate that age affects the inflammatory response to both influenza vaccination and infection. These age-induced differences need to be considered when developing vaccination strategies for different age groups.

Journal article

Tregoning J, 2017, No researcher is too junior to fix science, Nature, Vol: 545, Pages: 7-7, ISSN: 0028-0836

Journal article

Astrand A, Wingren C, Benjamin A, Tregoning JS, Garnett JP, Groves H, Gill S, Orogo-Wenn M, Lundqvist AJ, Walters D, Smith DM, Taylor JD, Baker EH, Baines DLet al., 2017, Dapagliflozin-lowered blood glucose reduces respiratory Pseudomonas aeruginosa infection in diabetic mice, BRITISH JOURNAL OF PHARMACOLOGY, Vol: 174, Pages: 836-847, ISSN: 0007-1188

Background and Purpose:Hyperglycaemia increases glucose concentrations in airway surface liquid and increases the risk of pulmonary Pseudomonas aeruginosa infection. We determined whether reduction of blood and airway glucose concentrations by the anti-diabetic drug dapagliflozin could reduce P. aeruginosa growth/survival in the lungs of diabetic mice.Experimental Approach:The effect of dapagliflozin on blood and airway glucose concentration, the inflammatory response and infection were investigated in C57BL/6J (wild type, WT) or leptin receptor-deficient (db/db) mice, treated orally with dapagliflozin prior to intranasal dosing with LPS or inoculation with P. aeruginosa. Pulmonary glucose transport and fluid absorption were investigated in Wistar rats using the perfused fluid-filled lung technique.Key Results:Fasting blood, airway glucose and lactate concentrations were elevated in the db/db mouse lung. LPS challenge increased inflammatory cells in bronchoalveolar lavage fluid from WT and db/db mice with and without dapagliflozin treatment. P. aeruginosa colony-forming units (CFU) were increased in db/db lungs. Pretreatment with dapagliflozin reduced blood and bronchoalveolar lavage glucose concentrations and P. aeruginosa CFU in db/db mice towards those seen in WT. Dapagliflozin had no adverse effects on the inflammatory response in the mouse or pulmonary glucose transport or fluid absorption in the rat lung.Conclusion and Implications:Pharmacological lowering of blood glucose with dapagliflozin effectively reduced P. aeruginosa infection in the lungs of diabetic mice and had no adverse pulmonary effects in the rat. Dapagliflozin has potential to reduce the use, or augment the effect, of antimicrobials in the prevention or treatment of pulmonary infection.

Journal article

Lambert L, Kinnear E, Mcdonald JU, Grodeland G, Bogen B, Stubsrud E, Lindberg MM, Brunsvik Frediksen A, Tregoning JSet al., 2016, DNA Vaccines Encoding Antigen Targeted to MHC Class II Induce Influenza-Specific CD8+ T Cell Responses, Enabling Faster Resolution of Influenza Disease, Frontiers in Immunology, Vol: 7, ISSN: 1664-3224

Current influenza vaccines are effective but imperfect, failing to cover against emerging strains of virus and requiring seasonaladministration to protect against new strains. A key step to improving influenza vaccines is to improve our understanding ofvaccine induced protection. Whilst it is clear that antibodies play a protective role, vaccine induced CD8+ T cells can improveprotection. To further explore the role of CD8+ T cells we used a DNA vaccine that encodes antigen dimerised to an immune celltargeting module. Immunising CB6F1 mice with the DNA vaccine in a heterologous prime boost regime with the seasonal proteinvaccine improved the resolution of influenza disease compared to protein alone. This improved disease resolution was dependenton CD8+ T cells. However, DNA vaccine regimes that induced CD8+ T cells alone were not protective and did not boost theprotection provided by protein. The MHC targeting module used was an anti-I-Ed single chain antibody specific to the BALB/c strainof mice. To test the role of MHC targeting we compared the response between BALB/c, C57BL/6 mice and an F1 cross of the twostrains (CB6F1). BALB/c mice were protected, C57BL/6 were not and the F1 had an intermediate phenotype; showing that thetargeting of antigen is important in the response. Based on these findings, and in agreement with other studies using differentvaccines, we conclude that in addition to antibody, inducing a protective CD8 response is important in future influenza vaccines.

Journal article

Porter JD, Watson J, Groves H, Dhariwal J, Almond MH, Wong E, Walton RP, Tregoning J, Kilty I, Johnston SL, Edwards MRet al., 2016, Identification of novel macrolides with antibacterial, anti-inflammatory and type I and III IFN-augmenting activity in airway epithelium, Journal of Antimicrobial Chemotherapy, Vol: 71, Pages: 2767-2781, ISSN: 1460-2091

Background Exacerbations of asthma and COPD are triggered by rhinoviruses. Uncontrolled inflammatory pathways, pathogenic bacterial burden and impaired antiviral immunity are thought to be important factors in disease severity and duration. Macrolides including azithromycin are often used to treat the above diseases, but exhibit variable levels of efficacy. Inhaled corticosteroids are also readily used in treatment, but may lack specificity. Ideally, new treatment alternatives should suppress unwanted inflammation, but spare beneficial antiviral immunity.Methods In the present study, we screened 225 novel macrolides and tested them for enhanced antiviral activity against rhinovirus, as well as anti-inflammatory activity and activity against Gram-positive and Gram-negative bacteria. Primary bronchial epithelial cells were grown from 10 asthmatic individuals and the effects of macrolides on rhinovirus replication were also examined. Another 30 structurally similar macrolides were also examined.Results The oleandomycin derivative Mac5, compared with azithromycin, showed superior induction (up to 5-fold, EC50 = 5–11 μM) of rhinovirus-induced type I IFNβ, type III IFNλ1 and type III IFNλ2/3 mRNA and the IFN-stimulated genes viperin and MxA, yet had no effect on IL-6 and IL-8 mRNA. Mac5 also suppressed rhinovirus replication at 48 h, proving antiviral activity. Mac5 showed antibacterial activity against Gram-positive Streptococcus pneumoniae; however, it did not have any antibacterial properties compared with azithromycin when used against Gram-negative Escherichia coli (as a model organism) and also the respiratory pathogens Pseudomonas aeruginosa and non-typeable Haemophilus influenzae. Further non-toxic Mac5 derivatives were identified with various anti-inflammatory, antiviral and antibacterial activities.Conclusions The data support the idea that macrolides have antiviral properties through a mechanism that is yet to be ascertained. We also

Journal article

Mcdonald J, Kaforou M, Clare S, Hale C, Ivanova M, Huntley D, Dorner M, Wright VJ, levin M, Torres FM, Herberg J, Tregoning JSet al., 2016, A Simple Screening Approach To Prioritize Genes for Functional Analysis Identifies a Role for Interferon Regulatory Factor 7 in the Control of Respiratory Syncytial Virus Disease, mSystems, Vol: 1, ISSN: 2379-5077

Greater understanding of the functions of host gene products in response to infection is required. While many of these genes enable pathogen clearance, some enhance pathogen growth or contribute to disease symptoms. Many studies have profiled transcriptomic and proteomic responses to infection, generating large data sets, but selecting targets for further study is challenging. Here we propose a novel data-mining approach combining multiple heterogeneous data sets to prioritize genes for further study by using respiratory syncytial virus (RSV) infection as a model pathogen with a significant health care impact. The assumption was that the more frequently a gene is detected across multiple studies, the more important its role is. A literature search was performed to find data sets of genes and proteins that change after RSV infection. The data sets were standardized, collated into a single database, and then panned to determine which genes occurred in multiple data sets, generating a candidate gene list. This candidate gene list was validated by using both a clinical cohort and in vitro screening. We identified several genes that were frequently expressed following RSV infection with no assigned function in RSV control, including IFI27, IFIT3, IFI44L, GBP1, OAS3, IFI44, and IRF7. Drilling down into the function of these genes, we demonstrate a role in disease for the gene for interferon regulatory factor 7, which was highly ranked on the list, but not for IRF1, which was not. Thus, we have developed and validated an approach for collating published data sets into a manageable list of candidates, identifying novel targets for future analysis.

Journal article

Gill SK, Hui K, Farne H, Garnett JP, Baines DL, Moore LSP, Holmes AH, Filloux A, Tregoning JSet al., 2016, Increased airway glucose increases airway bacterial load in hyperglycaemia, Scientific Reports, Vol: 6, ISSN: 2045-2322

Diabetes is associated with increased frequency of hospitalization due to bacterial lung infection.We hypothesize that increased airway glucose caused by hyperglycaemia leads to increasedbacterial loads. In critical care patients, we observed that respiratory tract bacterial colonisationis significantly more likely when blood glucose is high. We engineered mutants in genesaffecting glucose uptake and metabolism (oprB, gltK, gtrS and glk) in Pseudomonas aeruginosa,strain PAO1. These mutants displayed attenuated growth in minimal medium supplemented withglucose as the sole carbon source. The effect of glucose on growth in vivo was tested usingstreptozocin-induced, hyperglycaemic mice, which have significantly greater airway glucose.Bacterial burden in hyperglycaemic animals was greater than control animals when infected withwild type but not mutant PAO1. Metformin pre-treatment of hyperglycaemic animals reducedboth airway glucose and bacterial load. These data support airway glucose as a criticaldeterminant of increased bacterial load during diabetes.

Journal article

Mann JF, Tregoning JS, Aldon Y, Shattock RJ, McKay PFet al., 2016, CD71 targeting boosts immunogenicity of sublingually delivered influenza haemagglutinin antigen and protects against viral challenge in mice., Journal of Controlled Release, Vol: 232, Pages: 75-82, ISSN: 1873-4995

The delivery of vaccines to the sublingual mucosa is an attractive prospect due to the ease and acceptability of such an approach. However, novel adjuvant and delivery approaches are required to optimally vaccinate at this site. We have previously shown that conjugation of protein antigen to the iron transport molecule, transferrin, can significantly enhance mucosal immune responses. We tested whether conjugating influenza haemagglutinin to transferrin could improve the immune response to sublingually delivered antigen. Transferrin conjugated haemagglutinin induced a significant antibody and T cell response in both naïve animals and previously immunized animals. The immune response generated was able to protect mice against influenza virus challenge. Sublingually administered antigen dispersed more widely through the gastro-intestinal tract than intranasally delivered antigen and transferrin conjugation had a more marked effect on sublingually delivered antigen than intranasal immunisation. From these studies we conclude that transferrin conjugation of antigen is effective at boosting immune responses to sublingually delivered antigen and may be an attractive approach for influenza vaccines, particularly when mass campaigns are required.

Journal article

Badamchi-Zadeh A, McKay PF, Korber BT, Barinaga G, Walters AA, Nunes A, Gomes JP, Follman F, Tregoning JS, Shattock RJet al., 2016, A multi-component prime-boost vaccination regimen with a consensus MOMP antigen enhances Chlamydia trachomatis clearance, Frontiers in Immunology, Vol: 7, ISSN: 1664-3224

Background: A vaccine for Chlamydia trachomatis is of urgent medical need. We explored bioinformatic approaches to generate an immunogen against C. trachomatis that would induce cross-serovar T cell responses as (i) CD4+ T cells have been shown in animal models and human studies to be important in chlamydial protection, and (ii) antibody responses may be restrictive and serovar-specific.Methods: A consensus antigen based on over 1,500 MOMP sequences provided high epitope coverage against the most prevalent C. trachomatis strains in silico. Having designed the T cell immunogen, we assessed it for immunogenicity in prime-boost regimens. This consensus MOMP transgene was delivered using plasmid DNA, Human Adenovirus-5 (HuAd5) or modified vaccinia Ankara (MVA) vectors with or without MF59® adjuvanted recombinant MOMP protein. Results: Different regimens induced distinct immune profiles. The DNA-HuAd5-MVA-Protein (DAMP) vaccine regimen induced a cellular response with a Th1 biased serum antibody response, alongside high serum and vaginal MOMP-specific antibodies. This regimen significantly enhanced clearance against intravaginal C. trachomatis serovar D infection in both BALB/c and B6C3F1 mouse strains. This enhanced clearance was shown to be CD4+ T cell dependent. Future studies will need to confirm the specificity and precise mechanisms of protection. Conclusions: A C. trachomatis vaccine needs to induce a robust cellular response with broad cross-serovar coverage and that a heterologous prime-boost regimen may be an approach to achieve this.

Journal article

Russell RF, McDonald JU, Lambert L, Tregoning JSet al., 2016, Use of the microparticle Nano-SiO2 as an adjuvant to boost vaccine immune responses in neonatal mice against influenza., Journal of Virology, Vol: 90, Pages: 4735-4744, ISSN: 1098-5514

Neonates are at a high risk of infection, but vaccines are less effective in this age group; tailored adjuvants could potentially improve vaccine efficacy. Increased understanding about danger sensing by the innate immune system has led to the rational design of novel adjuvants. But differences in the neonatal innate immune response, for example to TLR agonists, can reduce the efficacy of these adjuvants in early life. We therefore targeted alternative danger sensing pathways, focusing on a range of compounds described as inflammasome agonists, including Nanoscale SiO2 (NanoSiO2), Calcium pyrophosphate dihydrate (CPPD) crystals and muramyl tripeptide (M-Tri-DAP), for their ability to act as adjuvants. In vitro these compounds induced an interleukin 1-beta (IL-1β) response in the macrophage-like cell line THP1. In vivo, adult CB6F1 female mice were immunised intramuscularly with H1N1 influenza vaccine antigens in combination with NanoSiO2, CPPD or M-Tri-DAP and subsequently challenged with H1N1 influenza (A/England/195/2009). The adjuvants boosted anti-haemagglutinin IgG and IgA antibody levels. Both adult and neonatal animals that received NanoSiO2 adjuvanted vaccines lost significantly less weight and recovered earlier after infection than control animals treated with antigen alone. Administration of the adjuvants led to an influx of activated inflammatory cells into the muscle, but little systemic inflammation measured by serum cytokines. Blocking IL-1β or caspase 1 in vivo had little effect on NanoSiO2 adjuvant function, suggesting it may work through other pathways than the inflammasome. Here we demonstrate that NanoSiO2 can act as an adjuvant and is effective in early life. IMPORTANCE: Vaccines can fail to protect the most at-risk populations, including the very young, elderly and immunocompromised. There is a gap in neonatal immunity between the waning of maternal protection and routine infant immunisation schedules, exacerbated by the failure of vac

Journal article

McDonald JU, Ekeruche-Makinde J, Ho MM, Tregoning JS, Ashiru Oet al., 2016, Development of a custom pentaplex sandwich immunoassay using Protein-G coupled beads for the Luminex® xMAP® platform., Journal of Immunological Methods, Vol: 433, Pages: 6-16, ISSN: 1872-7905

Multiplex bead-based assays have many advantages over ELISA, particularly for the analyses of large quantities of samples and/or precious samples of limited volume. Although many commercial arrays covering multitudes of biologically significant analytes are available, occasionally the development of custom arrays is necessary. Here, the development of a custom pentaplex sandwich immunoassay using Protein G-coupled beads, for analysis using the Luminex® xMAP® platform, is described. This array was required for the measurement of candidate biomarkers of vaccine safety in small volumes of mouse sera. Optimisation of this assay required a stepwise approach: testing cross-reactivity of the antibody pairs, the development of an in-house serum diluent buffer as well as heat-inactivation of serum samples to prevent interference from matrix effects. We then demonstrate the use of this array to analyse inflammatory mediators in mouse serum after immunisation. The work described here exemplifies how Protein G-coupled beads offer a flexible and robust approach to develop custom multiplex immunoassays, which can be applied to a range of analytes from multiple species.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00302271&limit=30&person=true&page=3&respub-action=search.html