Imperial College London

Dr Jonathan P. Eastwood

Faculty of Natural SciencesDepartment of Physics

Senior Lecturer
 
 
 
//

Contact

 

+44 (0)20 7594 8101jonathan.eastwood Website

 
 
//

Location

 

6M63Blackett LaboratorySouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Torbert:2018:10.1126/science.aat2998,
author = {Torbert, RB and Burch, JL and Phan, TD and Hesse, M and Argall, MR and Shuster, J and Ergun, RE and Alm, L and Nakamura, R and Genestreti, KJ and Gershman, DJ and Paterson, WR and Turner, DL and Cohen, I and Giles, BL and Pollock, CJ and Wang, S and Chen, L-J and Stawarz, JE and Eastwood, JP and Hwang, KJ and Farrugia, C and Dors, I and Vaith, H and Mouikis, C and Ardakani, A and Mauk, BH and Fuselier, SA and Russell, CT and Strangeway, RJ and Moore, TE and Drake, JF and Shay, MA and Khotyaintsev, YV and Lindqvist, P-A and Baumjohann, W and Wilder, FD and Ahmadi, N and Dorelli, JC and Avanov, LA and Oka, M and Baker, DN and Fennell, JF and Blake, JB and Jaynes, AN and Le, Contel O and Petrinec, SM and Lavraud, B and Saito, Y},
doi = {10.1126/science.aat2998},
journal = {Science},
pages = {1391--1395},
title = {Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space.},
url = {http://dx.doi.org/10.1126/science.aat2998},
volume = {362},
year = {2018}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Magnetic reconnection is an energy conversion process that occurs in many astrophysical contexts including Earth's magnetosphere, where the process can be investigated in situ by spacecraft. On 11 July 2017, the four Magnetospheric Multiscale spacecraft encountered a reconnection site in Earth's magnetotail, where reconnection involves symmetric inflow conditions. The electron-scale plasma measurements revealed (i) super-Alfvénic electron jets reaching 15,000 kilometers per second; (ii) electron meandering motion and acceleration by the electric field, producing multiple crescent-shaped structures in the velocity distributions; and (iii) the spatial dimensions of the electron diffusion region with an aspect ratio of 0.1 to 0.2, consistent with fast reconnection. The well-structured multiple layers of electron populations indicate that the dominant electron dynamics are mostly laminar, despite the presence of turbulence near the reconnection site.
AU - Torbert,RB
AU - Burch,JL
AU - Phan,TD
AU - Hesse,M
AU - Argall,MR
AU - Shuster,J
AU - Ergun,RE
AU - Alm,L
AU - Nakamura,R
AU - Genestreti,KJ
AU - Gershman,DJ
AU - Paterson,WR
AU - Turner,DL
AU - Cohen,I
AU - Giles,BL
AU - Pollock,CJ
AU - Wang,S
AU - Chen,L-J
AU - Stawarz,JE
AU - Eastwood,JP
AU - Hwang,KJ
AU - Farrugia,C
AU - Dors,I
AU - Vaith,H
AU - Mouikis,C
AU - Ardakani,A
AU - Mauk,BH
AU - Fuselier,SA
AU - Russell,CT
AU - Strangeway,RJ
AU - Moore,TE
AU - Drake,JF
AU - Shay,MA
AU - Khotyaintsev,YV
AU - Lindqvist,P-A
AU - Baumjohann,W
AU - Wilder,FD
AU - Ahmadi,N
AU - Dorelli,JC
AU - Avanov,LA
AU - Oka,M
AU - Baker,DN
AU - Fennell,JF
AU - Blake,JB
AU - Jaynes,AN
AU - Le,Contel O
AU - Petrinec,SM
AU - Lavraud,B
AU - Saito,Y
DO - 10.1126/science.aat2998
EP - 1395
PY - 2018///
SP - 1391
TI - Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space.
T2 - Science
UR - http://dx.doi.org/10.1126/science.aat2998
UR - https://www.ncbi.nlm.nih.gov/pubmed/30442767
UR - http://hdl.handle.net/10044/1/66284
VL - 362
ER -