Imperial College London

Dr Jonathan P. Eastwood

Faculty of Natural SciencesDepartment of Physics

Senior Lecturer
 
 
 
//

Contact

 

+44 (0)20 7594 8101jonathan.eastwood Website

 
 
//

Location

 

6M63Blackett LaboratorySouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

156 results found

Trenchi L, Coxon JC, Fear RC, Eastwood JP, Dunlop MW, Trattner KJ, Gershman DJ, Graham DB, Khotyaintsev Y, Lavraud Bet al., 2019, Signatures of magnetic separatrices at the borders of a crater flux transfer event connected to an active X‐line, Journal of Geophysical Research: Space Physics, ISSN: 2169-9380

In this paper, we present Magnetospheric Multiscale (MMS) observations of a flux transfer event (FTE) characterized by a clear signature in the magnetic field magnitude, which shows maximum at the center flanked by two depressions, detected during a period of stable southward interplanetary magnetic field. This class of FTEs are called “crater‐FTEs” and have been suggested to be connected with active reconnection X line. The MMS burst mode data allow the identification of intense fluctuations in the components of the electric field and electron velocity parallel to the magnetic field at the borders of the FTE, which are interpreted as signatures of the magnetic separatrices. In particular, the strong and persistent fluctuations of the parallel electron velocity at the borders of this crater‐FTE reported for the first time in this paper, sustain the field‐aligned current part of the Hall current system along the separatrix layer, and confirm that this FTE is connected with an active reconnection X line. Our observations suggest a stratification of particles inside the reconnection layer, where electrons are flowing toward the X line along the separatrix, are flowing away from the X line along the reconnected field lines adjacent to the separatrices, and more internally ions and electrons are flowing away from the X line with comparable velocities, forming the reconnection jets. This stratification of the reconnection layer forming the FTE, together with the reconnection jet at the trailing edge of the FTE, suggests clearly that this FTE is formed by the single X line generation mechanism.

Journal article

Krupar V, Magdalenic J, Eastwood JP, Gopalswamy N, Kruparova O, Szabo A, Nemec Fet al., 2019, Statistical survey of coronal mass ejections and interplanetary type II bursts, The Astrophysical Journal: an international review of astronomy and astronomical physics, Vol: 882, Pages: 1-5, ISSN: 0004-637X

Coronal mass ejections (CMEs) are responsible for most severe space weather events, such as solar energetic particle events and geomagnetic storms at Earth. Type II radio bursts are slow drifting emissions produced by beams of suprathermal electrons accelerated at CME-driven shock waves propagating through the corona and interplanetary medium. Here, we report a statistical study of 153 interplanetary type II radio bursts observed by the two STEREO spacecraft between 2008 March and 2014 August. The shock associated radio emission was compared with CME parameters included in the Heliospheric Cataloguing, Analysis and Techniques Service catalog. We found that faster CMEs are statistically more likely to be associated with the interplanetary type II radio bursts. We correlate frequency drifts of interplanetary type II bursts with white-light observations to localize radio sources with respect to CMEs. Our results suggest that interplanetary type II bursts are more likely to have a source region situated closer to CME flanks than CME leading edge regions.

Journal article

Poh G, Slavin JA, Lu S, Le G, Ozturk DS, Sun W, Zou S, Eastwood JP, Nakamura R, Baumjohann W, Russell CT, Gershman DJ, Giles BL, Pollock CJ, Moore TE, Torbert RB, Burch JLet al., 2019, Dissipation of earthward propagating flux rope through re‐reconnection with geomagnetic field: An MMS case study, Journal of Geophysical Research: Space Physics, Vol: 124, Pages: 7477-7493, ISSN: 2169-9380

Three‐dimensional global hybrid simulations and observations have shown that earthward‐moving flux ropes (FRs) can undergo magnetic reconnection (or re‐reconnection) with the near‐Earth dipole field to create dipolarization front (DF)‐like signatures that are immediately preceded by brief intervals of negative BZ. The simultaneous erosion of the southward BZ field at the leading edge of the FR and continuous reconnection of lobe magnetic flux at the X‐line tailward of the FR result in the asymmetric south‐north BZ signature in many earthward‐moving FRs and possibly DFs with negative BZ dips prior to their observation. In this study, we analyzed Magnetospheric MultiScale (MMS) observation of fields and plasma signatures associated with the encounter of an ion diffusion region ahead of an earthward‐moving FR on 3 August 2017. The signatures of this re‐reconnection event were (i) +/− BZ reversal, (ii) −/+ bipolar‐type quadrupolar Hall magnetic fields, (iii) northward super‐Alfvénic electron outflow jet of ~1,000–1,500 km/s, (iv) Hall electric field of ~15 mV/m, (v) intense currents of ~40–100 nA/m2, and (vi) J·E′ ~0.11 nW/m3. Our analysis suggests that the MMS spacecraft encounters the ion and electron diffusion regions but misses the X‐line. Our results are in good agreement with particle‐in‐cell simulations of Lu et al. (2016, https://doi.org/10.1002/2016JA022815). We computed a dimensionless reconnection rate of ~0.09 for this re‐reconnection event and through modeling, estimating that the FR would fully dissipate by −16.58 RE. We demonstrated pertubations in the high‐latitude ionospheric currents at the same time of the dissipation of earthward‐moving FRs using ground‐ and space‐based measurements.

Journal article

Fadanelli S, Lavraud B, Califano F, Jacquey C, Vernisse Y, Kacem I, Penou E, Gershman D, Dorelli J, Pollock C, Giles B, Avanov L, Burch J, Chandler M, Coffey V, Eastwood J, Ergun R, Farrugia C, Fuselier S, Genot V, Grigorenko E, Hasegawa H, Khotyaintsev Y, Le Contel O, Marchaudon A, Moore T, Nakamura R, Paterson W, Phan T, Rager A, Russell C, Saito Y, Sauvaud J-A, Schiff C, Smith S, Toledo Redondo S, Torbert R, Wang S, Yokota Set al., 2019, Four-spacecraft measurements of the shape and dimensionality of magnetic structures in the near-Earth plasma environment, Journal of Geophysical Research: Space Physics, Vol: 124, Pages: 6850-6868, ISSN: 2169-9380

We present a new method for determining the main relevant features of the local magnetic field configuration, based entirely on the knowledge of the magnetic field gradient using four- spacecraft measurements. The method, named “Magnetic Configuration Analysis” (MCA), estimates the spatial scales on which the magnetic field varies locally. While it directly derives from the well-known Magnetic Directional Derivative (MDD) and Magnetic Rotational Analysis (MRA) procedures (Shi et al., 2005, doi:10.1029/2005GL022454; Shen et al., 2007, doi:10.1029/2005JA011584), MCA was specifically designed to address the actual magnetic field geometry. By applying MCA to multi-spacecraft data from the MMS satellites, we perform both case and statistical analyses of local magnetic field shape and dimensionality at very high cadence and small scales. We apply this technique to different near-Earth environments and define a classification scheme for the type of configuration observed. While our case studies allow us to benchmark the method with those used in past works, our statistical analysis unveils the typical shape of magnetic configurations and their statistical distributions. We show that small-scale magnetic configurations are generally elongated, displaying forms of cigar and blade shapes, but occasionally being planar in shape like thin pancakes (mostly inside current sheets). Magnetic configurations, however, rarely show isotropy in their magnetic variance. The planar nature of magnetic configurations and, most importantly, their scale lengths strongly depend on the plasma β parameter. Finally, the most invariant direction is statistically aligned with the electric current, reminiscent of the importance of electromagnetic forces in shaping the local magnetic configuration

Journal article

AkhavanTafti M, Slavin JA, Eastwood JP, Cassak PA, Gershman DJet al., 2019, MMS multi‐point analysis of FTE evolution: physical characteristics and dynamics, Journal of Geophysical Research: Space Physics, Vol: 124, Pages: 5376-5395, ISSN: 2169-9380

Previous studies have indicated that flux transfer events (FTEs) grow as they convect away from the reconnection site along the magnetopause. This increase in FTE diameter may occur via adiabatic expansion in response to decreasing external pressure away from the subsolar region or due to a continuous supply of magnetic flux and plasma to the FTEs' outer layers by magnetic reconnection. Here we investigate an ensemble of 55 FTEs at the subsolar magnetopause using Magnetospheric Multiscale (MMS) multi‐point measurements. The FTEs are initially modeled as quasi‐force‐free flux ropes in order to infer their geometry and the spacecraft trajectory relative to their central axis. The MMS observations reveal a radially‐inward net force at the outer layers of FTEs which can accelerate plasmas and fields toward the FTE's core region. Inside the FTEs, near the central axis, plasma density is found to decrease as the axial net force increases. It is interpreted that the axial net force accelerates plasmas along the axis in the region of compressing field lines. Statistical analysis of the MMS observations of the 55 FTEs indicates that plasma pressure, Pth, decreases with increasing FTE diameter, λ, as Pth,obsv ∝ λ−0.24. Assuming that all 55 FTEs started out with similar diameters, this rate of plasma pressure decrease with increasing FTE diameter is at least an order of magnitude slower than the theoretical rate for adiabatic expansion (i.e., Pth,adiab. ∝ λ−3.3), suggesting the presence of efficient plasma heating mechanisms, such as magnetic reconnection, to facilitate FTE growth.

Journal article

Good SW, Kilpua EKJ, LaMoury AT, Forsyth RJ, Eastwood JP, Möstl Cet al., 2019, Self‐similarity of ICME flux ropes: Observations by radially aligned spacecraft in the inner Heliosphere, Journal of Geophysical Research: Space Physics, Vol: 124, Pages: 4960-4982, ISSN: 2169-9380

Interplanetary coronal mass ejections (ICMEs) are a significant feature of the heliospheric environment and the primary cause of adverse space weather at the Earth. ICME propagation and the evolution of ICME magnetic field structure during propagation are still not fully understood. We analyze the magnetic field structures of 18 ICME magnetic flux ropes observed by radially aligned spacecraft in the inner heliosphere. Similarity in the underlying flux rope structures is determined through the application of a simple technique that maps the magnetic field profile from one spacecraft to the other. In many cases, the flux ropes show very strong underlying similarities at the different spacecraft. The mapping technique reveals similarities that are not readily apparent in the unmapped data and is a useful tool when determining whether magnetic field time series observed at different spacecraft are associated with the same ICME. Lundquist fitting has been applied to the flux ropes, and the rope orientations have been determined; macroscale differences in the profiles at the aligned spacecraft may be ascribed to differences in flux rope orientation. Assuming that the same region of the ICME was observed by the aligned spacecraft in each case, the fitting indicates some weak tendency for the rope axes to reduce in inclination relative to the solar equatorial plane and to align with the solar east‐west direction with heliocentric distance.Plain Language SummaryCoronal mass ejections (CMEs) are large eruptions of magnetic field and plasma from the Sun. When they arrive at the Earth, these eruptions can cause significant damage to ground and orbital infrastructure; forecasting this “space weather” impact of CMEs at the Earth remains a difficult task. The impact of individual CMEs is largely dependent on their magnetic field configurations, and an important aspect of space weather forecasting is understanding how CME field configuration changes with distance from t

Journal article

Stawarz J, Eastwood JP, Phan TD, Gingell IL, Shay MA, Burch JL, Ergun RE, Giles BL, Gershman DJ, Le Contel O, Lindqvist P-A, Russell CT, Strangeway RJ, Torbert RB, Argall MR, Fischer D, Magnes W, Franci Let al., 2019, Properties of the turbulence associated with electron-only magnetic reconnection in Earth's magnetosheath, Letters of the Astrophysical Journal, Vol: 877, ISSN: 2041-8205

Turbulent plasmas generate intense current structures, which have long been suggested as magnetic reconnection sites. Recent Magnetospheric Multiscale observations in Earth's magnetosheath revealed a novel form of reconnection where the dynamics only couple to electrons, without ion involvement. It was suggested that such dynamics were driven by magnetosheath turbulence. In this study, the fluctuations are examined to determine the properties of the turbulence and if a signature of reconnection is present in the turbulence statistics. The study reveals statistical properties consistent with plasma turbulence with a correlation length of ~10 ion inertial lengths. When reconnection is more prevalent, a steepening of the magnetic spectrum occurs at the length scale of the reconnecting current sheets. The statistics of intense currents suggest the prevalence of electron-scale current sheets favorable for electron reconnection. The results support the hypothesis that electron reconnection is driven by turbulence and highlight diagnostics that may provide insight into reconnection in other turbulent plasmas.

Journal article

Phan TD, Eastwood JP, Shay MA, Drake JF, Sonnerup BUÖ, Fujimoto M, Cassak PA, Øieroset M, Burch JL, Torbert RB, Rager AC, Dorelli JC, Gershman DJ, Pollock C, Pyakurel PS, Haggerty CC, Khotyaintsev Y, Lavraud B, Saito Y, Oka M, Ergun RE, Retino A, Le Contel O, Argall MR, Giles BL, Moore TE, Wilder FD, Strangeway RJ, Russell CT, Lindqvist PA, Magnes Wet al., 2019, Publisher Correction: Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath, Nature, Vol: 569, Pages: E9-E9, ISSN: 0028-0836

Change history: In this Letter, the y-axis values in Fig. 3f should go from 4 to -8 (rather than from 4 to -4), the y-axis values in Fig. 3h should appear next to the major tick marks (rather than the minor ticks), and in Fig. 1b, the arrows at the top and bottom of the electron-scale current sheet were going in the wrong direction; these errors have been corrected online.

Journal article

Barnes D, Davies JA, Harrison RA, Byrne JP, Perry CH, Bothmer V, Eastwood JP, Gallagher PT, Kilpua EKJ, Moestl C, Rodriguez L, Rouillard AP, Odstrcil Det al., 2019, CMEs in the heliosphere: II. A statistical analysis of the kinematic properties derived from single-spacecraft geometrical modelling techniques applied to CMEs detected in the heliosphere from 2007 to 2017 by STEREO/HI-1, Solar Physics, Vol: 294, ISSN: 0038-0938

Recent observations with the Heliospheric Imagers (HIs) onboard the twin NASA Solar Terrestrial Relations Observatory (STEREO) spacecraft have provided unprecedented observations of a large number of coronal mass ejections (CMEs) in the inner heliosphere. In this article we discuss the generation of the HIGeoCAT CME catalogue and perform a statistical analysis of its events. The catalogue was generated as part of the EU FP7 HELCATS (Heliospheric Cataloguing, Analysis and Techniques Service) project ( www.helcats-fp7.eu/ ). It is created by generating time/elongation maps for CMEs using observations from the inner (HI-1) and outer (HI-2) cameras along a position angle close to the CME apex. Next, we apply single-spacecraft geometric-fitting techniques to determine the kinematic properties of these CMEs, including their speeds, propagation directions, and launch times. The catalogue contains a total of 1455 events (801 from STEREO-A and 654 from STEREO-B) from April 2007 to the end of August 2017. We perform a statistical analysis of the properties of CMEs in HIGeoCAT and compare the results with those from the Large Angle Spectrometric Coronagraph (LASCO) CDAW catalogues (Yashiro et al.J. Geophys. Res. Space Phys.109, A07105, 2004) and the COR-2 catalogue of Vourlidas et al. (Astrophys. J.838, 141, 2004) during the same period. We find that the distributions of both speeds and latitudes for the HIGeoCAT CMEs correlate with the sunspot number over the solar cycle. We also find that the HI-derived CME speed distributions are generally consistent with coronagraph catalogues over the solar cycle, albeit with greater absolute speeds due to the differing methods with which each is derived.

Journal article

Hesse M, Norgren C, Tenfjord P, Burch JL, Liu YH, Chen LJ, Bessho N, Wang S, Nakamura R, Eastwood JP, Hoshino M, Torbert RB, Ergun REet al., 2019, Erratum: "On the role of separatrix instabilities in heating the reconnection outflow region" [Phys. Plasmas 25, 122902 (2018)], Physics of Plasmas, Vol: 26, ISSN: 1070-664X

In a recent paper1 about electron heating at the reconnection separatrix, two figures depicting the contributions to the electron energy balance and the contribution to the total, quasi-viscous heating are incorrectly displayed. The correct figures are as follows: [Table Presented].

Journal article

Øieroset M, Phan TD, Drake JF, Eastwood JP, Fuselier SA, Strangeway RJ, Haggerty C, Shay MA, Oka M, Wang S, Chen L-J, Kacem I, Lavraud B, Angelopoulos V, Burch JL, Torbert RB, Ergun RE, Khotyaintsev Y, Lindqvist PA, Gershman DJ, Giles BL, Pollock C, Moore TE, Russell CT, Saito Y, Avanov LA, Paterson Wet al., 2019, Reconnection with magnetic flux pileup at the interface of converging jets at the magnetopause, Geophysical Research Letters, Vol: 46, Pages: 1937-1946, ISSN: 0094-8276

We report Magnetospheric Multiscale observations of reconnection in a thin current sheet at the interface of interlinked flux tubes carried by converging reconnection jets at Earth's magnetopause. The ion skin depth‐scale width of the interface current sheet and the non‐frozen‐in ions indicate that Magnetospheric Multiscale crossed the reconnection layer near the X‐line, through the ion diffusion region. Significant pileup of the reconnecting component of the magnetic field in this and three other events on approach to the interface current sheet was accompanied by an increase in magnetic shear and decrease in Δβ, leading to conditions favorable for reconnection at the interface current sheet. The pileup also led to enhanced available magnetic energy per particle and strong electron heating. The observations shed light on the evolution and energy release in 3‐D systems with multiple reconnection sites.

Journal article

Gingell I, Schwartz SJ, Eastwood JP, Burch JL, Ergun RE, Fuselier S, Gershman DJ, Giles BL, Khotyaintsev Y, Lavraud B, Lindqvist P-A, Paterson WR, Phan TD, Russell CT, Stawarz JE, Strangeway RJ, Torbert RB, Wilder Fet al., 2019, Observations of magnetic reconnection in the ransition region of quasi-parallel hocks, Geophysical Research Letters, Vol: 46, Pages: 1177-1184, ISSN: 0094-8276

Using observations of Earth's bow shock by the Magnetospheric Multiscale mission, we show for the first time that active magnetic reconnection is occurring at current sheets embedded within the quasi‐parallel shock's transition layer. We observe an electron jet and heating but no ion response, suggesting we have observed an electron‐only mode. The lack of ion response is consistent with simulations showing reconnection onset on sub‐ion time scales. We also discuss the impact of electron heating in shocks via reconnection.

Journal article

Nakamura R, Genestreti KJ, Nakamura T, Baumjohann W, Varsani A, Nagai T, Bessho N, Burch JL, Denton RE, Eastwood JP, Ergun RE, Gershman DJ, Giles BL, Hasegawa H, Hesse M, Lindqvist P-A, Russell CT, Stawarz JE, Strangeway RJ, Torbert RBet al., 2019, Structure of the current sheet in the 11 July 2017 Electron Diffusion Region Event, Journal of Geophysical Research: Space Physics, Vol: 124, Pages: 1173-1186, ISSN: 2169-9380

The structure of the current sheet along the Magnetospheric Multiscale (MMS) orbit is examined during the 11 July 2017 Electron Diffusion Region (EDR) event. The location of MMS relative to the X‐line is deduced and used to obtain the spatial changes in the electron parameters. The electron velocity gradient values are used to estimate the reconnection electric field sustained by nongyrotropic pressure. It is shown that the observations are consistent with theoretical expectations for an inner EDR in 2‐D reconnection. That is, the magnetic field gradient scale, where the electric field due to electron nongyrotropic pressure dominates, is comparable to the gyroscale of the thermal electrons at the edge of the inner EDR. Our approximation of the MMS observations using a steady state, quasi‐2‐D, tailward retreating X‐line was valid only for about 1.4 s. This suggests that the inner EDR is localized; that is, electron outflow jet braking takes place within an ion inertia scale from the X‐line. The existence of multiple events or current sheet processes outside the EDR may play an important role in the geometry of reconnection in the near‐Earth magnetotail.

Journal article

Eastwood J, Hapgood MA, Biffis E, Benedetti D, Bisi MM, Green L, Bentley RD, Burnett Cet al., 2019, Quantifying the economic value of space weather forecasting for power grids: An exploratory study, Space Weather, Vol: 16, Pages: 2052-2067, ISSN: 1539-4956

An accurate understanding of space weather socioeconomic impact is fundamental to the development of appropriate operational services, forecasting capabilities, and mitigation strategies. One way to approach this problem is by developing physics‐based models and frameworks that can lead to a bottom‐up estimate of risk and likely impact. Here we describe the development of a new framework to assess the economic impact of space weather on power distribution networks and the supply of electricity. In particular, we focus on the phenomenon of the geomagnetic substorm, which is relatively localized in time and space, and occurs multiple times with varying severity during a geomagnetic storm. The framework uses the AE index to characterize substorm severity, and the impact of the substorm is modulated by the resilience of the power grid and the nature of available forecast. Possible scenarios for substorm sequences during a 1‐in‐10‐, a 1‐in‐30‐, and a 1‐in‐100‐year geomagnetic storm events are generated based on the 2003, 1989, and 1859 geomagnetic storms. Economic impact, including international spill over, can then be calculated using standard techniques, based on the duration and the geographical footprint of the power outage. Illustrative calculations are made for the European sector, for a variety of forecast and resilience scenarios. However, currently available data are highly regionally inhomogeneous, frustrating attempts to define an overall global economic impact at the present time.

Journal article

Torbert RB, Burch JL, Phan TD, Hesse M, Argall MR, Shuster J, Ergun RE, Alm L, Nakamura R, Genestreti KJ, Gershman DJ, Paterson WR, Turner DL, Cohen I, Giles BL, Pollock CJ, Wang S, Chen L-J, Stawarz JE, Eastwood JP, Hwang KJ, Farrugia C, Dors I, Vaith H, Mouikis C, Ardakani A, Mauk BH, Fuselier SA, Russell CT, Strangeway RJ, Moore TE, Drake JF, Shay MA, Khotyaintsev YV, Lindqvist P-A, Baumjohann W, Wilder FD, Ahmadi N, Dorelli JC, Avanov LA, Oka M, Baker DN, Fennell JF, Blake JB, Jaynes AN, Le Contel O, Petrinec SM, Lavraud B, Saito Yet al., 2018, Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space., Science, Vol: 362, Pages: 1391-1395

Magnetic reconnection is an energy conversion process that occurs in many astrophysical contexts including Earth's magnetosphere, where the process can be investigated in situ by spacecraft. On 11 July 2017, the four Magnetospheric Multiscale spacecraft encountered a reconnection site in Earth's magnetotail, where reconnection involves symmetric inflow conditions. The electron-scale plasma measurements revealed (i) super-Alfvénic electron jets reaching 15,000 kilometers per second; (ii) electron meandering motion and acceleration by the electric field, producing multiple crescent-shaped structures in the velocity distributions; and (iii) the spatial dimensions of the electron diffusion region with an aspect ratio of 0.1 to 0.2, consistent with fast reconnection. The well-structured multiple layers of electron populations indicate that the dominant electron dynamics are mostly laminar, despite the presence of turbulence near the reconnection site.

Journal article

Hesse M, Norgren C, Tenfjord P, Burch JL, Liu YH, Chen LJ, Bessho N, Wang S, Nakamura R, Eastwood JP, Hoshino M, Torbert RB, Ergun REet al., 2018, On the role of separatrix instabilities in heating the reconnection outflow region, Physics of Plasmas, Vol: 25, ISSN: 1070-664X

A study of the role microinstabilities at the reconnection separatrix can play in heating the electrons during the transition from inflow to outflow is being presented. We find that very strong flow shears at the separatrix layer lead to counterstreaming electron distributions in the region around the separatrix, which become unstable to a beam-type instability. Similar to what has been seen in earlier research, the ensuing instability leads to the formation of propagating electrostatic solitons. We show here that this region of strong electrostatic turbulence is the predominant electron heating site when transiting from inflow to outflow. The heating is the result of heating generated by electrostatic turbulence driven by overlapping beams, and its macroscopic effect is a quasi-viscous contribution to the overall electron energy balance. We suggest that instabilities at the separatrix can play a key role in the overall electron energy balance in magnetic reconnection.

Journal article

Eggington J, Mejnertsen L, Desai R, Eastwood J, Chittenden Jet al., 2018, Forging links in Earth's plasma environment, Astronomy and Geophysics, Vol: 59, Pages: 6.26-6.28, ISSN: 1366-8781

Journal article

Hwang KJ, Sibeck DG, Burch JL, Choi E, Fear RC, Lavraud B, Giles BL, Gershman D, Pollock CJ, Eastwood JP, Khotyaintsev Y, Escoubet P, Fu H, Toledo-Redondo S, Torbert RB, Ergun RE, Paterson WR, Dorelli JC, Avanov L, Russell CT, Strangeway RJet al., 2018, Small-scale flux transfer events formed in the reconnection exhaust region between two X lines, Journal of Geophysical Research: Space Physics, Vol: 123, Pages: 8473-8488, ISSN: 2169-9380

We report MMS observations of the ion-scale flux transfer events (FTEs) that may involve two main X lines and tearing instability between the two X lines. The four spacecraft detected multiple isolated regions with enhanced magnetic field strength and bipolar Bn signatures normal to the nominal magnetopause, indicating FTEs. The currents within the FTEs flow mostly parallel to B, and the magnetic tension force is balanced by the total pressure gradient force. During these events, the plasma bulk flow velocity was directed southward. Detailed analysis of the magnetic and electric field and plasma moments variations suggests that the FTEs were initially embedded within the exhaust region north of an X line but were later located southward/downstream of a subsequent X line. The cross sections of the individual FTEs are in the range of ~2.5–6.8 ion inertial lengths. The observations suggest the formation of multiple secondary FTEs. The presence of an X line in the exhaust region southward of a second X line results from the southward drift of an old X line and the reformation of a new X line. The current layer between the two X lines is unstable to the tearing instability, generating multiple ion-scale flux-rope-type secondary islands.

Journal article

Schwartz SJ, Avanov L, Turner D, Zhang H, Gingell I, Eastwood JP, Gershman DJ, Johlander A, Russell CT, Burch JL, Dorelli JC, Eriksson S, Ergun RE, Fuselier SA, Giles BL, Goodrich KA, Khotyaintsev YV, Lavraud B, Lindqvist PA, Oka M, Phan TD, Strangeway RJ, Trattner KJ, Torbert RB, Vaivads A, Wei H, Wilder Fet al., 2018, Ion kinetics in a hot flow anomaly: MMS observations, Geophysical Research Letters, Vol: 45, Pages: 11520-11529, ISSN: 0094-8276

Hot Flow Anomalies (HFAs) are transients observed at planetary bow shocks, formed by the shock interaction with a convected interplanetary current sheet. The primary interpretation relies on reflected ions channeled upstream along the current sheet. The short duration of HFAs has made direct observations of this process difficult. We employ high resolution measurements by NASA's Magnetospheric Multiscale Mission to probe the ion microphysics within a HFA. Magnetospheric Multiscale Mission data reveal a smoothly varying internal density and pressure, which increase toward the trailing edge of the HFA, sweeping up particles trapped within the current sheet. We find remnants of reflected or other backstreaming ions traveling along the current sheet, but most of these are not fast enough to out-run the incident current sheet convection. Despite the high level of internal turbulence, incident and backstreaming ions appear to couple gyro-kinetically in a coherent manner.

Journal article

Stawarz JE, Eastwood JP, Genestreti KJ, Nakamura R, Ergun RE, Burgess D, Burch JL, Fuselier SA, Gershamn DJ, Giles BL, Le Contel O, Lindqvist P-A, Russell CT, Torbert RBet al., 2018, Intense electric fields and electron‐scale substructure within magnetotail flux ropes as revealed by the Magnetospheric Multiscale mission, Geophysical Research Letters, Vol: 45, Pages: 8783-8792, ISSN: 0094-8276

Three flux ropes associated with near‐Earth magnetotail reconnection are analyzed using Magnetospheric Multiscale observations. The flux ropes are Earthward propagating with sizes from ∼3 to 11 ion inertial lengths. Significantly different axial orientations are observed, suggesting spatiotemporal variability in the reconnection and/or flux rope dynamics. An electron‐scale vortex, associated with one of the most intense electric fields (E) in the event, is observed within one of the flux ropes. This E is predominantly perpendicular to the magnetic field (B); the electron vortex is frozen‐in with E × B drifting electrons carrying perpendicular current and causing a small‐scale magnetic enhancement. The vortex is ∼16 electron gyroradii in size perpendicular to B and potentially elongated parallel to B. The need to decouple the frozen‐in vortical motion from the surrounding plasma implies a parallel E at the structure's ends. The formation of frozen‐in electron vortices within reconnection‐generated flux ropes may have implications for particle acceleration.

Journal article

Eastwood J, Mistry R, Phan TD, Schwartz SJ, Ergun RE, Drake JF, Oieroset M, Stawarz JE, Goldman MV, Haggerty C, Shay MA, Burch JL, Gershman DJ, Giles BL, LIndqvist PA, Torbert RB, Strangeway RJ, Russell CTet al., 2018, Guide field reconnection: exhaust structure and heating, Geophysical Research Letters, Vol: 45, Pages: 4569-4577, ISSN: 0094-8276

Magnetospheric Multiscale (MMS) observations are used to probe the structure and temperature profile of a guide field reconnection exhaust ~100 ion inertial lengths downstream from the X‐line in the Earth's magnetosheath. Asymmetric Hall electric and magnetic field signatures were detected, together with a density cavity confined near one edge of the exhaust and containing electron flow toward the X‐line. Electron holes were also detected both on the cavity edge and at the Hall magnetic field reversal. Predominantly parallel ion and electron heating was observed in the main exhaust but within the cavity, electron cooling and enhanced parallel ion heating was found. This is explained in terms of the parallel electric field, which inhibits electron mixing within the cavity on newly reconnected field lines, but accelerates ions. Consequently, guide field reconnection causes inhomogeneous changes in ion and electron temperature across the exhaust.

Journal article

Phan TD, Eastwood JP, Shay MA, Drake JF, Sonnerup BUO, Fujimoto M, Cassak PA, Øieroset M, Burch JL, Torbert RB, Rager AC, Dorelli JC, Gershman DJ, Pollock C, Pyakurel PS, Haggerty CC, Khotyaintsev Y, Lavraud B, Saito Y, Oka M, Ergun RE, Retino A, Le Contel O, Argall MR, Giles BL, Moore TE, Wilder FD, Strangeway RJ, Russell CT, Lindqvist PA, Magnes Wet al., 2018, Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath, Nature, Vol: 557, Pages: 202-206, ISSN: 0028-0836

© 2018 Macmillan Publishers Ltd., part of Springer Nature. Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region 1,2 . On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed 3-5 . Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region 6 . In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales 7-11 . However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.

Journal article

Harrison RA, Davies JA, Barnes D, Byrne JP, Perry CH, Bothmer V, Eastwood JP, Gallagher PT, Kilpua EKJ, Moestl C, Rodriguez L, Rouillard AP, Odstril Det al., 2018, CMEs in the Heliosphere: I. A Statistical Analysis of the Observational Properties of CMEs Detected in the Heliosphere from 2007 to 2017 by STEREO/HI-1, Solar Physics, Vol: 293, ISSN: 0038-0938

We present a statistical analysis of coronal mass ejections (CMEs) imaged by the Heliospheric Imager (HI) instruments on board NASA’s twin-spacecraft STEREO mission between April 2007 and August 2017 for STEREO-A and between April 2007 and September 2014 for STEREO-B. The analysis exploits a catalogue that was generated within the FP7 HELCATS project. Here, we focus on the observational characteristics of CMEs imaged in the heliosphere by the inner (HI-1) cameras, while following papers will present analyses of CME propagation through the entire HI fields of view. More specifically, in this paper we present distributions of the basic observational parameters – namely occurrence frequency, central position angle (PA) and PA span – derived from nearly 2000 detections of CMEs in the heliosphere by HI-1 on STEREO-A or STEREO-B from the minimum between Solar Cycles 23 and 24 to the maximum of Cycle 24; STEREO-A analysis includes a further 158 CME detections from the descending phase of Cycle 24, by which time communication with STEREO-B had been lost. We compare heliospheric CME characteristics with properties of CMEs observed at coronal altitudes, and with sunspot number. As expected, heliospheric CME rates correlate with sunspot number, and are not inconsistent with coronal rates once instrumental factors/differences in cataloguing philosophy are considered. As well as being more abundant, heliospheric CMEs, like their coronal counterparts, tend to be wider during solar maximum. Our results confirm previous coronagraph analyses suggesting that CME launch sites do not simply migrate to higher latitudes with increasing solar activity. At solar minimum, CMEs tend to be launched from equatorial latitudes, while at maximum, CMEs appear to be launched over a much wider latitude range; this has implications for understanding the CME/solar source association. Our analysis provides some supporting evidence for the systematic dragging of CMEs to lower latitude

Journal article

Krupar V, Maksimovic M, Kontar EP, Zaslavsky A, Santolik O, Soucek J, Kruparova O, Eastwood JP, Szabo Aet al., 2018, Interplanetary Type III Bursts and Electron Density Fluctuations in the Solar Wind, ASTROPHYSICAL JOURNAL, Vol: 857, ISSN: 0004-637X

Type III bursts are generated by fast electron beams originated from magnetic reconnection sites of solar flares. As propagation of radio waves in the interplanetary medium is strongly affected by random electron density fluctuations, type III bursts provide us with a unique diagnostic tool for solar wind remote plasma measurements. Here, we performed a statistical survey of 152 simple and isolated type III bursts observed by the twin-spacecraft Solar TErrestrial RElations Observatory mission. We investigated their time–frequency profiles in order to retrieve decay times as a function of frequency. Next, we performed Monte Carlo simulations to study the role of scattering due to random electron density fluctuations on time–frequency profiles of radio emissions generated in the interplanetary medium. For simplification, we assumed the presence of isotropic electron density fluctuations described by a power law with the Kolmogorov spectral index. Decay times obtained from observations and simulations were compared. We found that the characteristic exponential decay profile of type III bursts can be explained by the scattering of the fundamental component between the source and the observer despite restrictive assumptions included in the Monte Carlo simulation algorithm. Our results suggest that relative electron density fluctuations $\langle \delta {n}_{{\rm{e}}}\rangle /{n}_{{\rm{e}}}$ in the solar wind are 0.06–0.07 over wide range of heliospheric distances.

Journal article

Ergun RE, Goodrich KA, Wilder FD, Ahmadi N, Holmes JC, Eriksson S, Stawarz JE, Nakamura R, Genestreti KJ, Hesse M, Burch JL, Torbert RB, Phan TD, Schwartz SJ, Eastwood JP, Strangeway RJ, Le Contel O, Russell CT, Argall MR, Lindqvist PA, Chen LJ, Cassak PA, Giles BL, Dorelli JC, Gershman D, Leonard TW, Lavraud B, Retino A, Matthaeus W, Vaivads Aet al., 2018, Magnetic Reconnection, Turbulence, and Particle Acceleration: Observations in the Earth's Magnetotail, Geophysical Research Letters, Vol: 45, Pages: 3338-3347, ISSN: 0094-8276

We report observations of turbulent dissipation and particle acceleration from large-amplitude electric fields (E) associated with strong magnetic field (B) fluctuations in the Earth's plasma sheet. The turbulence occurs in a region of depleted density with anti-earthward flows followed by earthward flows suggesting ongoing magnetic reconnection. In the turbulent region, ions and electrons have a significant increase in energy, occasionally > 100 keV, and strong variation. There are numerous occurrences of |E| > 100 mV/m including occurrences of large potentials ( > 1 kV) parallel to B and occurrences with extraordinarily large J · E (J is current density). In this event, we find that the perpendicular contribution of J · E with frequencies near or below the ion cyclotron frequency (f ci ) provide the majority net positive J · E. Large-amplitude parallel E events with frequencies above f ci to several times the lower hybrid frequency provide significant dissipation and can result in energetic electron acceleration.

Journal article

Good SW, Forsyth RJ, Eastwood JP, Möstl Cet al., 2018, Correlation of ICME magnetic fields at radially aligned spacecraft, Solar Physics, Vol: 293, ISSN: 0038-0938

The magnetic field structures of two interplanetary coronal mass ejections (ICMEs), each observed by a pair of spacecraft close to radial alignment, have been analysed. The ICMEs were observed in situ by MESSENGER and STEREO-B in November 2010 and November 2011, while the spacecraft were separated by more than 0.6 AU in heliocentric distance, less than 4° in heliographic longitude, and less than 7° in heliographic latitude. Both ICMEs took approximately two days to travel between the spacecraft. The ICME magnetic field profiles observed at MESSENGER have been mapped to the heliocentric distance of STEREO-B and compared directly to the profiles observed by STEREO-B. Figures that result from this mapping allow for easy qualitative assessment of similarity in the profiles. Macroscale features in the profiles that varied on timescales of one hour, and which corresponded to the underlying flux rope structure of the ICMEs, were well correlated in the solar east–west and north–south directed components, with Pearson’s correlation coefficients of approximately 0.85 and 0.95, respectively; microscale features with timescales of one minute were uncorrelated. Overall correlation values in the profiles of one ICME were increased when an apparent change in the flux rope axis direction between the observing spacecraft was taken into account. The high degree of similarity seen in the magnetic field profiles may be interpreted in two ways. If the spacecraft sampled the same region of each ICME (i.e. if the spacecraft angular separations are neglected), the similarity indicates that there was little evolution in the underlying structure of the sampled region during propagation. Alternatively, if the spacecraft observed different, nearby regions within the ICMEs, it indicates that there was spatial homogeneity across those different regions. The field structure similarity observed in these ICMEs points to the value of placing in situ space weather monitors w

Journal article

Genestreti KJ, Varsani A, Burch JL, Cassak PA, Torbert RB, Nakamura R, Ergun RE, Phan TD, Toledo-Redondo S, Hesse M, Wang S, Giles BL, Russell CT, Vörös Z, Hwang KJ, Eastwood JP, Lavraud B, Escoubet CP, Fear RC, Khotyaintsev Y, Nakamura TKM, Webster JM, Baumjohann Wet al., 2018, MMS observation of asymmetric reconnection supported by 3-D electron pressure divergence, Journal of Geophysical Research: Space Physics, Vol: 123, Pages: 1806-1821, ISSN: 2169-9380

We identify the electron diffusion region (EDR) of a guide field dayside reconnection site encountered by the Magnetospheric Multiscale (MMS) mission and estimate the terms in generalized Ohm's law that controlled energy conversion near the X-point. MMS crossed the moderate-shear (∼130°) magnetopause southward of the exact X-point. MMS likely entered the magnetopause far from the X-point, outside the EDR, as the size of the reconnection layer was less than but comparable to the magnetosheath proton gyroradius, and also as anisotropic gyrotropic "outflow" crescent electron distributions were observed. MMS then approached the X-point, where all four spacecraft simultaneously observed signatures of the EDR, for example, an intense out-of-plane electron current, moderate electron agyrotropy, intense electron anisotropy, nonideal electric fields, and nonideal energy conversion. We find that the electric field associated with the nonideal energy conversion is (a) well described by the sum of the electron inertial and pressure divergence terms in generalized Ohms law though (b) the pressure divergence term dominates the inertial term by roughly a factor of 5:1, (c) both the gyrotropic and agyrotropic pressure forces contribute to energy conversion at the X-point, and (d) both out-of-the-reconnection-plane gradients (∂/∂M) and in-plane (∂/∂L,N) in the pressure tensor contribute to energy conversion near the X-point. This indicates that this EDR had some electron-scale structure in the out-of-plane direction during the time when (and at the location where) the reconnection site was observed.

Journal article

Kacem I, Jacquey C, Génot V, Lavraud B, Vernisse Y, Marchaudon A, Le Contel O, Breuillard H, Phan TD, Hasegawa H, Oka M, Trattner KJ, Farrugia CJ, Paulson K, Eastwood JP, Fuselier SA, Turner D, Eriksson S, Wilder F, Russell CT, Øieroset M, Burch J, Graham DB, Sauvaud JA, Avanov L, Chandler M, Coffey V, Dorelli J, Gershman DJ, Giles BL, Moore TE, Saito Y, Chen LJ, Penou Eet al., 2018, Magnetic reconnection at a thin current sheet separating two interlaced flux tubes at the Earth's magnetopause, Journal of Geophysical Research: Space Physics, Vol: 123, Pages: 1779-1793, ISSN: 2169-9380

The occurrence of spatially and temporally variable reconnection at the Earth's magnetopause leads to the complex interaction of magnetic fields from the magnetosphere and magnetosheath. Flux transfer events (FTEs) constitute one such type of interaction. Their main characteristics are (1) an enhanced core magnetic field magnitude and (2) a bipolar magnetic field signature in the component normal to the magnetopause, reminiscent of a large-scale helicoidal flux tube magnetic configuration. However, other geometrical configurations which do not fit this classical picture have also been observed. Using high-resolution measurements from the Magnetospheric Multiscale mission, we investigate an event in the vicinity of the Earth's magnetopause on 7 November 2015. Despite signatures that, at first glance, appear consistent with a classic FTE, based on detailed geometrical and dynamical analyses as well as on topological signatures revealed by suprathermal electron properties, we demonstrate that this event is not consistent with a single, homogenous helicoidal structure. Our analysis rather suggests that it consists of the interaction of two separate sets of magnetic field lines with different connectivities. This complex three-dimensional interaction constructively conspires to produce signatures partially consistent with that of an FTE. We also show that, at the interface between the two sets of field lines, where the observed magnetic pileup occurs, a thin and strong current sheet forms with a large ion jet, which may be consistent with magnetic flux dissipation through magnetic reconnection in the interaction region.

Journal article

Akhavan-Tafti M, Slavin JA, Le G, Eastwood JP, Strangeway RJ, Russell CT, Nakamura R, Baumjohann W, Torbert RB, Giles BL, Gershman DJ, Burch JLet al., 2018, MMS examination of FTEs at the earth's subsolar magnetopause, Journal of Geophysical Research: Space Physics, Vol: 123, Pages: 1224-1241, ISSN: 2169-9380

Determining the magnetic field structure, electric currents, and plasma distributions within flux transfer event (FTE)-type flux ropes is critical to the understanding of their origin, evolution, and dynamics. Here the Magnetospheric Multiscale mission's high-resolution magnetic field and plasma measurements are used to identify FTEs in the vicinity of the subsolar magnetopause. The constant-α flux rope model is used to identify quasi-force free flux ropes and to infer the size, the core magnetic field strength, the magnetic flux content, and the spacecraft trajectories through these structures. Our statistical analysis determines a mean diameter of 1,700 ± 400 km (~30 ± 9 d i ) and an average magnetic flux content of 100 ± 30 kWb for the quasi-force free FTEs at the Earth's subsolar magnetopause which are smaller than values reported by Cluster at high latitudes. These observed nonlinear size and magnetic flux content distributions of FTEs appear consistent with the plasmoid instability theory, which relies on the merging of neighboring, small-scale FTEs to generate larger structures. The ratio of the perpendicular to parallel components of current density, R J , indicates that our FTEs are magnetically force-free, defined as R J < 1, in their core regions ( < 0.6 R flux rope ). Plasma density is shown to be larger in smaller, newly formed FTEs and dropping with increasing FTE size. It is also shown that parallel ion velocity dominates inside FTEs with largest plasma density. Field-aligned flow facilitates the evacuation of plasma inside newly formed FTEs, while their core magnetic field strengthens with increasing FTE size.

Journal article

Zabori B, Hirn A, Eastwood J, Brown P, Palla C, Oddy T, Nolbert D, Santin G, Nieminen P, Marosy Get al., 2018, Space radiation and magnetic field environment specification for the Radcube space weather related CubeSat mission, ISSN: 0074-1795

Copyright © 2018 by the International Astronautical Federation (IAF). All rights reserved. To study space weather environment in space, as a first step, it is necessary to develop and establish an advanced, real-time monitoring system. Such a monitoring system may be able to provide scientific data on space radiation (electron and proton spectra, flux of heavier ions) and the status of the magnetosphere in order to gain the possibility for a reliable forecast capability. The expansion of the CubeSat/SmallSat industry will make it possible in the near future to launch orbital constellations with relevant, miniaturised instrumentation in order to study the space weather environment in near real-time. Thus the development of RADCUBE, a 3U CubeSat demonstration mission lead by a Hungarian company, called C3S LLC, for space weather monitoring purpose, has begun within the European Space Agency (ESA) CubeSat programme. As part of the development a new, combined, space weather monitoring instrument package (called RadMag) has been initiated at the Centre for Energy Research, Hungarian Academy of Sciences in the framework of ESA General Support Technology Programme (GSTP) in collaboration with Imperial College London and Astronika. The RadMag measurement capabilities were defined by reconstructing the expected space radiation and magnetic field environments for different orbit scenarios. The space radiation environment was analyzed considering the following parameters: flux of Galactic Cosmic Rays, trapped protons and electrons, solar particle events, corresponding Linear Energy Transfer (LET) spectra and Total Ionizing Dose (TID) levels. The expected magnetic field environment was modeled with the IGRF2015 + Tsyganenko-96 model both for quiet and stormy conditions. This paper addresses the results of these radiation and magnetic field environment reconstruction and calculations for the different possible orbital parameters of the RADCUBE mission in order to characteri

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00236001&limit=30&person=true