Imperial College London

DrJonathanHudson

Faculty of Natural SciencesDepartment of Physics

Visiting Researcher
 
 
 
//

Contact

 

+44 (0)20 7594 2986jony.hudson Website

 
 
//

Location

 

211Blackett LabSouth Kensington Campus

//

Summary

 

Summary

I'm a researcher in the Centre for Cold Matter, within the Quantum Optics and Laser Science group of the physics department.

My main research interest is in constructing precise experimental tests of the laws of physics. For more than a decade I've been building (with others, of course!) an experiment to measure the electron's electric dipole moment. In plainer language, this is a measurement of the shape of the electron: is it round or not? This is an exceedingly difficult thing to measure, as any deviation from roundness is known to be tiny. But ultimately it will be a worthwhile measurement as the knowledge of the electron's shape will shed light on some of the most mysterious processes in particle physics. In particular it promises to yield valuable information on the striking matter-antimatter asymmetry of the universe, one of the biggest mysteries in physics today. It also will allow us to probe processes at far higher energies than even the next generation of particle accelerators can hope to acheive.

From this work I have developed a growing fascination with cold, and hopefully one day ultracold, molecules. Atoms are rich physical systems with a variety of interactions and behaviours, but are still simple enough to be very accurately described by theory. This makes them ideal "test-benches" to precisely study and test the theory. Small molecules are also simple enough that their properties can be calculated with tremendous precision. But they differ by having additional degrees of freedom, as compared to atoms (they vibrate and rotate in a way which atoms do not). This makes it possible to probe and test aspects of physical law that would not be possible, or practical, with atoms alone. Techniques for manipulating molecules, however, are not as mature as those for manipulating atoms, making such experiments difficult. In particular, general techniques for manipulating the molecules' motion are not well-developed. I am currently (again, with others!) investigating a number of techniques which might give us such control of the molecules' motion.

I also have an amateur interest in computer programming and programming languages. I'm always on the look out for things that I can half-inch from computer science to get computers to do more of my work for me. Recent "highlights" have included thinking about how to represent, generate, and verify the correctness of hierarchical/nested digital patterns; and a rewrite-rule based computer algebra package for Dirac-notation style quantum mechanical calculations.

If you're interested, you can find out more on my personal website, http://j-star.org . 

Publications

Journals

Hills DJA, Grütter AM, Hudson JJ, An algorithm for discovering Lagrangians automatically from data

Tarbutt MR, Hudson JJ, Sauer BE, et al., 2008, Preparation and manipulation of molecules for fundamental physics tests

Hudson JJ, 2008, A term-rewriting system for computer quantum algebra

Zhelyazkova V, Cournol A, Wall TE, et al., 2014, Laser cooling and slowing of CaF molecules, Physical Review A, Vol:89, ISSN:1050-2947

Hudson JJ, Tarbutt MR, Sauer BE, et al., 2014, Stochastic multi-channel lock-in detection, New Journal of Physics, Vol:16, ISSN:1367-2630

More Publications