Imperial College London

Dr Kiron Athwal

Faculty of EngineeringDepartment of Mechanical Engineering

Research Associate
 
 
 
//

Contact

 

k.athwal12

 
 
//

Location

 

774City and Guilds BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

13 results found

Athwal K, Milner P, Bellier G, Amis AAet al., 2018, Posterior capsular release is a biomechanically safe procedure to perform in total knee arthroplasty, Knee Surgery, Sports Traumatology, Arthroscopy, ISSN: 0942-2056

PurposeSurgeons may attempt to strip the posterior capsule from its femoral attachment to overcome flexion contracture in total knee arthroplasty (TKA); however, it is unclear if this impacts anterior–posterior (AP) laxity of the implanted knee. The aim of the study was to investigate the effect of posterior capsular release on AP laxity in TKA, and compare this to the restraint from the posterior cruciate ligament (PCL).MethodsEight cadaveric knees were mounted in a six degree of freedom testing rig and tested at 0°, 30°, 60° and 90° flexion with ± 150 N AP force, with and without a 710 N axial compressive load. After the native knee was tested, a deep dished cruciate-retaining TKA was implanted and the tests were repeated. The PCL was then cut, followed by releasing the posterior capsule using a curved osteotome.ResultsWith 0 N axial load applied, cutting the PCL as well as releasing the posterior capsule significantly increased posterior laxity compared to the native knee at all flexion angles, and CR TKA states at 30°, 60° and 90° (p < 0.05). However, no significant increase in laxity was found between cutting the PCL and subsequent PostCap release (n.s.). In anterior drawer, there was a significant increase of 1.4 mm between cutting the PCL and PostCap release at 0°, but not at any other flexion angles (p = 0.021). When a 710 N axial load was applied, there was no significant difference in anterior or posterior translation across the different knee states (n.s.).ConclusionsPosterior capsular release only caused a small change in AP laxity compared to cutting the PCL and, therefore, may not be considered detrimental to overall AP stability if performed during TKA surgery.Level of evidenceControlled laboratory study.

JOURNAL ARTICLE

Halewood C, Athwal KK, Amis A, 2018, Pre-clinical assessment of total knee replacement anterior-posterior constraint, Journal of Biomechanics, Vol: 73, Pages: 153-160, ISSN: 0021-9290

Pre-clinical, bench-top assessment of Total Knee Replacements (TKR) can provide information about the inherent constraint provided by a TKR, which does not depend on the condition of the patient undergoing the arthroplasty. However little guidance is given by the ASTM standard on test configurations such as medial-lateral (M:L) loading distribution, flexion angle or restriction of secondary motions. Using a purpose built rig for a materials testing machine, four TKRs currently in widespread clinical use, including medial-pivot and symmetrical condyle types, were tested for anterior-posterior translational constraint. Compressive joint loads from 710 to 2000 N, and a range of medial-lateral (M:L) load distributions, from 70:30% to 30:70% M:L, were applied at different flexion angles with secondary motions unconstrained. It was found that TKA constraint was significantly less at 60 and 90° flexion than at 0°, whilst increasing the compressive joint load increased the force required to translate the tibia to limits of AP constraint at all flexion angles tested. Additionally when M:L load distribution was shifted medially, a coupled internal rotation was observed with anterior translation and external rotation with posterior translation. This paper includes some recommendations for future development of pre-clinical testing methods.

JOURNAL ARTICLE

Athwal KK, Lord B, Milner P, Gutteridge A, Amis AAet al., 2017, 0036 - A NOVEL DESIGN OF METAL INTERFERENCE SCREW CAN IMPROVE EASE OF INSERTION WHILE MAINTAINING FIXATION, The Knee, Vol: 24, Pages: IX-IX, ISSN: 0968-0160

JOURNAL ARTICLE

Athwal KK, El Daou H, Inderhaug E, Manning W, Davies AJ, Deehan DJ, Amis AAet al., 2017, Erratum to: An in vitro analysis of medial structures and a medial soft tissue reconstruction in a constrained condylar total knee arthroplasty, KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY, Vol: 25, Pages: 2656-2656, ISSN: 0942-2056

JOURNAL ARTICLE

Athwal K, El Daou, Lord B, Davies AJ, Manning W, Rodriguez y Baena, Deehan DJ, Amiset al., 2016, Lateral soft-tissue structures contribute to cruciate-retaining total knee arthroplasty stability., Journal of Orthopaedic Science, Vol: 35, Pages: 1902-1909, ISSN: 0949-2658

Little information is available to surgeons regarding how the lateral structures prevent instability in the replaced knee. The aim of this study was to quantify the lateral soft‐tissue contributions to stability following cruciate‐retaining total knee arthroplasty (CR TKA). Nine cadaveric knees were tested in a robotic system at full extension, 30°, 60°, and 90° flexion angles. In both native and CR implanted states, ±90 N anterior–posterior force, ±8 Nm varus–valgus, and ±5 Nm internal–external torque were applied. The anterolateral structures (ALS, including the iliotibial band), the lateral collateral ligament (LCL), the popliteus tendon complex (Pop T), and the posterior cruciate ligament (PCL) were transected and their relative contributions to stabilizing the applied loads were quantified. The LCL was found to be the primary restraint to varus laxity (an average 56% across all flexion angles), and was significant in internal–external rotational stability (28% and 26%, respectively) and anterior drawer (16%). The ALS restrained 25% of internal rotation, while the PCL was significant in posterior drawer only at 60° and 90° flexion. The Pop T was not found to be significant in any tests. Therefore, the LCL was confirmed as the major lateral structure in CR TKA stability throughout the arc of flexion and deficiency could present a complex rotational laxity that cannot be overcome by the other passive lateral structures or the PCL. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1902–1909, 2017.

JOURNAL ARTICLE

Kittl C, El-Daou H, Athwal KK, Gupte CM, Weiler A, Williams A, Amis AAet al., 2016, The Role of the Anterolateral Structures and the ACL in Controlling Laxity of the Intact and ACL-Deficient Knee: Response., American Journal of Sports Medicine, Vol: 44, Pages: NP15-NP18, ISSN: 1552-3365

JOURNAL ARTICLE

Athwal KK, El Daou H, Inderhaug E, Manning W, Davies AJ, Deehan DJ, Amis AAet al., 2016, An in vitro analysis of medial structures and a medial soft tissue reconstruction in a constrained condylar total knee arthroplasty, Knee Surgery, Sports Traumatology, Arthroscopy, Vol: 25, Pages: 2646-2655, ISSN: 0942-2056

PurposeThe aim of this study was to quantify the medial soft tissue contributions to stability following constrained condylar (CC) total knee arthroplasty (TKA) and determine whether a medial reconstruction could restore stability to a soft tissue-deficient, CC-TKA knee.MethodsEight cadaveric knees were mounted in a robotic system and tested at 0°, 30°, 60°, and 90° of flexion with ±50 N anterior–posterior force, ±8 Nm varus–valgus, and ±5 Nm internal–external torque. The deep and superficial medial collateral ligaments (dMCL, sMCL) and posteromedial capsule (PMC) were transected and their relative contributions to stabilising the applied loads were quantified. After complete medial soft tissue transection, a reconstruction using a semitendinosus tendon graft was performed, and the effect on kinematic behaviour under equivocal conditions was measured.ResultsIn the CC-TKA knee, the sMCL was the major medial restraint in anterior drawer, internal–external, and valgus rotation. No significant differences were found between the rotational laxities of the reconstructed knee to the pre-deficient state for the arc of motion examined. The relative contribution of the reconstruction was higher in valgus rotation at 60° than the sMCL; otherwise, the contribution of the reconstruction was similar to that of the sMCL.ConclusionThere is contention whether a CC-TKA can function with medial deficiency or more constraint is required. This work has shown that a CC-TKA may not provide enough stability with an absent sMCL. However, in such cases, combining the CC-TKA with a medial soft tissue reconstruction may be considered as an alternative to a hinged implant.

JOURNAL ARTICLE

Kittl C, El-Daou H, Athwal KK, Gupte CM, Weiler A, Williams A, Amis AAet al., 2016, The Role of the Anterolateral Structures and the ACL in Controlling Laxity of the Intact and ACL-Deficient Knee, AMERICAN JOURNAL OF SPORTS MEDICINE, Vol: 44, Pages: 345-354, ISSN: 0363-5465

Background:Anterolateral rotatory instability (ALRI) may result from combined anterior cruciate ligament (ACL) and lateral extra-articular lesions, but the roles of the anterolateral structures remain controversial.Purpose:To determine the contribution of each anterolateral structure and the ACL in restraining simulated clinical laxity in both the intact and ACL-deficient knee.Study Design:Controlled laboratory study.Methods:A total of 16 knees were tested using a 6 degrees of freedom robot with a universal force-moment sensor. The system automatically defined the path of unloaded flexion/extension. At different flexion angles, anterior-posterior, internal-external, and internal rotational laxity in response to a simulated pivot shift were tested. Eight ACL-intact and 8 ACL-deficient knees were tested. The kinematics of the intact/deficient knee was replayed after transecting/resecting each structure of interest; therefore, the decrease in force/torque reflected the contribution of the transected/resected structure in restraining laxity. Data were analyzed using repeated-measures analyses of variance and paired t tests.Results:For anterior translation, the intact ACL was clearly the primary restraint. The iliotibial tract (ITT) resisted 31% ± 6% of the drawer force with the ACL cut at 30° of flexion; the anterolateral ligament (ALL) and anterolateral capsule resisted 4%. For internal rotation, the superficial layer of the ITT significantly restrained internal rotation at higher flexion angles: 56% ± 20% and 56% ± 16% at 90° for the ACL-intact and ACL-deficient groups, respectively. The deep layer of the ITT restrained internal rotation at lower flexion angles, with 26% ± 9% and 33% ± 12% at 30° for the ACL-intact and ACL-deficient groups, respectively. The other anterolateral structures provided no significant contribution. During the pivot-shift test, the ITT provided 72% ± 14% of the restraint at 45° for th

JOURNAL ARTICLE

Athwal KK, Daou HE, Kittl C, Davies AJ, Deehan DJ, Amis AAet al., 2015, The superficial medial collateral ligament is the primary medial restraint to knee laxity after cruciate-retaining or posterior-stabilised total knee arthroplasty: effects of implant type and partial release., Knee Surgery, Sports Traumatology, Arthroscopy, Vol: 24, Pages: 2646-2655, ISSN: 0942-2056

PURPOSE: The aim of this study was to quantify the contributions of medial soft tissues to stability following cruciate-retaining (CR) or posterior-stabilised (PS) total knee arthroplasty (TKA). METHODS: Using a robotic system, eight cadaveric knees were subjected to ±90-N anterior-posterior force, ±5-Nm internal-external and ±8-Nm varus-valgus torques at various flexion angles. The knees were tested intact and then with CR and PS implants, and successive cuts of the deep and superficial medial collateral ligaments (dMCL, sMCL) and posteromedial capsule (PMC) quantified the percentage contributions of each structure to restraining the applied loads. RESULTS: In implanted knees, the sMCL restrained valgus rotation (62 % across flexion angles), anterior-posterior drawer (24 and 10 %, respectively) and internal-external rotation (22 and 37 %). Changing from CR TKA to PS TKA increased the load on the sMCL when resisting valgus loads. The dMCL restrained 11 % of external and 13 % of valgus rotations, and the PMC was significant at low flexion angles. CONCLUSIONS: This work has shown that medial release in the varus knee should be minimised, as it may inadvertently result in a combined laxity pattern. There is increasing interest in preserving constitutional varus in TKA, and this work argues for preservation of the sMCL to afford the surgeon consistent restraint and maintain a balanced knee for the patient.

JOURNAL ARTICLE

Ghosh KM, Hunt N, Blain A, Athwal KK, Longstaff L, Amis AA, Rushton S, Deehan DJet al., 2015, Isolated popliteus tendon injury does not lead to abnormal laxity in posterior-stabilised total knee arthroplasty, KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY, Vol: 23, Pages: 1763-1769, ISSN: 0942-2056

JOURNAL ARTICLE

Hunt NC, Ghosh KM, Athwal KK, Longstaff LM, Amis AA, Deehan DJet al., 2014, Lack of evidence to support present medial release methods in total knee arthroplasty, KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY, Vol: 22, Pages: 3100-3112, ISSN: 0942-2056

JOURNAL ARTICLE

Hunt NC, Ghosh KM, Blain AP, Athwal KK, Rushton SP, Amis AA, Longstaff LM, Deehan DJet al., 2014, How does laxity after single radius total knee arthroplasty compare with the native knee?, J. Orthop. Res., Vol: 32, Pages: 1208-1213, ISSN: 1554-527X

JOURNAL ARTICLE

Athwal KK, Hunt NC, Davies AJ, Deehan DJ, Amis AAet al., Clinical biomechanics of instability related to total knee arthroplasty, Clinical Biomechanics, ISSN: 0268-0033

JOURNAL ARTICLE

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00513653&limit=30&person=true