Imperial College London

DrKennyMalpartida Cardenas

Faculty of MedicineDepartment of Infectious Disease

Imperial College Research Fellow
 
 
 
//

Contact

 

k.malpartida-cardenas16

 
 
//

Location

 

ChemistrySouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

20 results found

Malpartida-Cardenas K, Baum J, Cunnington A, Georgiou P, Rodriguez-Manzano Jet al., 2023, A dual paper-based nucleic acid extraction method from blood in under ten minutes for point-of-care diagnostics, The Analyst, Vol: 148, Pages: 3036-3044, ISSN: 0003-2654

Nucleic acid extraction (NAE) plays a crucial role for diagnostic testing procedures. For decades, dried blood spots (DBS) have been used for serology, drug monitoring, and molecular studies. However, extracting nucleic acids from DBS remains a significant challenge, especially when attempting to implement these applications to the point-of-care (POC). To address this issue, we have developed a paper-based NAE method using cellulose filter papers (DBSFP) that operates without the need for electricity (at room temperature). Our method allows for NAE in less than 7 min, and it involves grade 3 filter paper pre-treated with 8% (v/v) igepal surfactant, 1 min washing step with 1× PBS, and 5 min incubation at room temperature in 1× TE buffer. The performance of the methodology was assessed with loop-mediated isothermal amplification (LAMP), targeting the human reference gene beta-actin and the kelch 13 gene from P. falciparum. The developed method was evaluated against FTA cards and magnetic bead-based purification, using time-to-positive (min) for comparative analysis. Furthermore, we optimised our approach to take advantage of the dual functionality of the paper-based extraction, allowing for elution (eluted disk) as well as direct placement of the disk in the LAMP reaction (in situ disk). This flexibility extends to eukaryotic cells, bacterial cells, and viral particles. We successfully validated the method for RNA/DNA detection and demonstrated its compatibility with whole blood stored in anticoagulants. Additionally, we studied the compatibility of DBSFP with colorimetric and lateral flow detection, showcasing its potential for POC applications. Across various tested matrices, targets, and experimental conditions, our results were comparable to those obtained using gold standard methods, highlighting the versatility of our methodology. In summary, this manuscript presents a cost-effective solution for NAE from DBS, enabling molecular testing in virtually

Journal article

Malpartida Cardenas K, Moser N, Ansah F, Pennisi I, Ahu Prah D, Eva Amoah L, Awandare G, Hafalla JC, Cunnington A, Baum J, Rodriguez Manzano J, Georgiou Pet al., 2023, Sensitive detection of asymptomatic and symptomatic malaria with seven novel parasite-specific LAMP assays and translation for use at point-of-care, Microbiology Spectrum, Vol: 11, Pages: 1-12, ISSN: 2165-0497

Human malaria is a life-threatening parasitic disease with high impact in the sub-Saharan Africa region, where 95% of global cases occurred in 2021. While most malaria diagnostic tools are focused on Plasmodium falciparum, there is a current lack of testing non-P. falciparum cases, which may be underreported and, if undiagnosed or untreated, may lead to severe consequences. In this work, seven species-specific loop-mediated isothermal amplification (LAMP) assays were designed and evaluated against TaqMan quantitative PCR (qPCR), microscopy, and enzyme-linked immunosorbent assays (ELISAs). Their clinical performance was assessed with a cohort of 164 samples of symptomatic and asymptomatic patients from Ghana. All asymptomatic samples with a parasite load above 80 genomic DNA (gDNA) copies per μL of extracted sample were detected with the Plasmodium falciparum LAMP assay, reporting 95.6% (95% confidence interval [95% CI] of 89.9 to 98.5) sensitivity and 100% (95% CI of 87.2 to 100) specificity. This assay showed higher sensitivity than microscopy and ELISA, which were 52.7% (95% CI of 39.7 to 67%) and 67.3% (95% CI of 53.3 to 79.3%), respectively. Nine samples were positive for P. malariae, indicating coinfections with P. falciparum, which represented 5.5% of the tested population. No samples were detected as positive for P. vivax, P. ovale, P. knowlesi, or P. cynomolgi by any method. Furthermore, translation to the point-of-care was demonstrated with a subcohort of 18 samples tested locally in Ghana using our handheld lab-on-chip platform, Lacewing, showing comparable results to a conventional fluorescence-based instrument. The developed molecular diagnostic test could detect asymptomatic malaria cases, including submicroscopic parasitemia, and it has the potential to be used for point-of-care applications.

Journal article

Malpartida-Cardenas K, Baum J, Cunnington A, Georgiou P, Rodriguez-Manzano Jet al., 2022, Electricity-free nucleic acid extraction method from dried blood spots on filter paper for point-of-care diagnostics

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Nucleic acid extraction is a crucial step for molecular biology applications, being a determinant for any diagnostic test procedure. Dried blood spots (DBS) have been used for decades for serology, drug monitoring, environmental investigations, and molecular studies. Nevertheless, nucleic acid extraction from DBS remains one of the main challenges to translate them to the point-of-care (POC).</jats:p></jats:sec><jats:sec><jats:title>Method</jats:title><jats:p>We have developed a fast nucleic acid extraction (NAE) method from DBS which is electricity-free and relies on cellulose filter papers (DBSFP). The performance of NAE was assessed with loop-mediated isothermal amplification (LAMP), targeting the human reference gene beta-actin. The developed method was evaluated against FTA cards and magnetic bead-based purification, using time-to-positive (min) for comparative analysis. We optimised and validated the developed method for elution (<jats:italic>eluted disk</jats:italic>) and disk directly in the reaction (<jats:italic>in-situ disk)</jats:italic>, RNA and DNA detection, and whole blood stored in anticoagulants (K<jats:sub>2</jats:sub>EDTA and lithium heparin). Furthermore, the compatibility of DBSFP with colourimetric detection was studied to show the transferability to the POC.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>The proposed DBSFP is based on grade 3 filter paper pre-treated with 8% (v/v) igepal surfactant, 1 min washing step with PBS 1X and elution in TE 1X buffer after 5 min incubation at room temperature, enabling NAE under 7 min. Obtained results were comparable to gold standard methods across tested matrices, targets and experimental conditions, demonstrating the versatility of the methodology. Las

Journal article

Malpartida-Cardenas K, Miglietta L, Peng T, Moniri A, Holmes A, Georgiou P, Rodriguez-Manzano Jet al., 2022, Single-channel digital LAMP multiplexing using Amplification Curve Analysis, Sensors and Diagnostics, Vol: 1, Pages: 465-468, ISSN: 2635-0998

Loop-mediated isothermal amplification assays are currently limited to one target per reaction in the absence of melting curve analysis, molecular probes or restriction enzyme digestion. Here, we demonstrate multiplexing of five targets in a single fluorescent channel using digital LAMP and the machine learning-based method amplification curve analysis, resulting in a classification accuracy of 91.33% on 54 186 positive amplification events.

Journal article

Miglietta L, Moniri A, Pennisi I, Malpartida Cardenas K, Abbas H, Hill-Cawthorne K, Bolt F, Davies F, Holmes AH, Georgiou P, Rodriguez Manzano Jet al., 2021, Coupling machine learning and high throughput multiplex digital PCR enables accurate detection of carbapenem-resistant genes in clinical isolates, Publisher: Cold Spring Harbor Laboratory

<jats:p>Background: The emergence and spread of carbapenemase-producing organisms (CPO) are a significant clinical and public health concern. Rapid and accurate identification of patients colonised with CPO is essential to adopt prompt prevention measures in order to reduce the risk of transmission. Recent proof-of-concept studies have demonstrated the ability to combine machine learning (ML) algorithms with real-time digital PCR (dPCR) instruments to increase classification accuracy of multiplex assays. From this, we sought to determine if this ML based methodology could accurately identify five major carbapenem-resistant genes in clinical CPO-isolates.Methods: We collected 253 clinical isolates (including 221 CPO-positive samples) and developed a novel 5-plex assay for detection of blaVIM, blaOXA-48, blaNDM, blaIMP and blaKPC. Combining the recently reported ML method "Amplification and Melting Curve Analysis" (AMCA) with the abovementioned multiplex assay, we assessed the performance of the methodology in detecting these five carbapenem-resistant genes. The classification accuracy relies on the usage of real-time data from a single fluorescent channel and benefits from the kinetic and thermodynamic information encoded in the thousands of amplification events produced by high throughput dPCR.Results: The 5-plex showed a lower limit of detection of 100 DNA copies per reaction for each primer set and no cross-reactivity with other carbapenemase genes. The AMCA classifier demonstrated excellent predictive performance with 99.6% (CI 97.8-99.9%) accuracy (only one misclassified sample out of the 253, with a total of 163,966 positive amplification events), which represents a 7.9% increase compared to the conventional ML-based melting curve analysis (MCA) method.Conclusion: This work demonstrates the utility of the AMCA method to increase the throughput and performance of state-of-the-art molecular diagnostic platforms, reducing costs without any changes

Working paper

Rodriguez-Manzano J, Malpartida-Cardenas K, Moser N, Pennisi I, Cavuto M, Miglietta L, Moniri A, Penn R, Satta G, Randell P, Davies F, Bolt F, Barclay W, Holmes A, Georgiou Pet al., 2021, Handheld point-of-care system for rapid detection of SARS-CoV-2 extracted RNA in under 20 min, ACS Central Science, Vol: 7, Pages: 307-317, ISSN: 2374-7943

The COVID-19 pandemic is a global health emergency characterized by the high rate of transmission and ongoing increase of cases globally. Rapid point-of-care (PoC) diagnostics to detect the causative virus, SARS-CoV-2, are urgently needed to identify and isolate patients, contain its spread and guide clinical management. In this work, we report the development of a rapid PoC diagnostic test (<20 min) based on reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) and semiconductor technology for the detection of SARS-CoV-2 from extracted RNA samples. The developed LAMP assay was tested on a real-time benchtop instrument (RT-qLAMP) showing a lower limit of detection of 10 RNA copies per reaction. It was validated against extracted RNA from 183 clinical samples including 127 positive samples (screened by the CDC RT-qPCR assay). Results showed 91% sensitivity and 100% specificity when compared to RT-qPCR and average positive detection times of 15.45 ± 4.43 min. For validating the incorporation of the RT-LAMP assay onto our PoC platform (RT-eLAMP), a subset of samples was tested (n = 52), showing average detection times of 12.68 ± 2.56 min for positive samples (n = 34), demonstrating a comparable performance to a benchtop commercial instrument. Paired with a smartphone for results visualization and geolocalization, this portable diagnostic platform with secure cloud connectivity will enable real-time case identification and epidemiological surveillance.

Journal article

Moniri A, Miglietta L, Malpartida Cardenas K, Pennisi I, Cacho Soblechero M, Moser N, Holmes A, Georgiou P, Rodriguez Manzano Jet al., 2020, Amplification curve analysis: Data-driven multiplexing using real-time digital PCR, Analytical Chemistry, Vol: 92, Pages: 13134-13143, ISSN: 0003-2700

Information about the kinetics of PCR reactions are encoded in the amplification curve. However, in digital PCR (dPCR), this information is typically neglected by collapsing each amplification curve into a binary output (positive/negative). Here, we demonstrate that the large volume of raw data obtained from realtime dPCR instruments can be exploited to perform data-driven multiplexing in a single fluorescent channel using machine learning methods, by virtue of the information in the amplification curve. This new approach, referred to as amplification curve analysis (ACA), was shown using an intercalating dye (EvaGreen), reducing the cost and complexity of the assay and enabling the use of melting curve analysis for validation. As a case study, we multiplexed 3 carbapenem-resistant genes to show the impact of this approach on global challenges such as antimicrobial resistance. In the presence of single targets, we report a classification accuracy of 99.1% (N = 16188) which represents a 19.7% increase compared to multiplexing based on the final fluorescent intensity. Considering all combinations of amplification events (including coamplifications), the accuracy was shown to be 92.9% (N = 10383). To support the analysis, we derived a formula to estimate the occurrence of co-amplification in dPCR based on multivariate Poisson statistics, and suggest reducing the digital occupancy in the case of multiple targets in the same digital panel. The ACA approach takes a step towards maximizing the capabilities of existing real-time dPCR instruments and chemistries, by extracting more information from data to enable data-driven multiplexing with high accuracy. Furthermore, we expect that combining this method with existing probe-based assays will increase multiplexing capabilities significantly. We envision that once emerging point-of-care technologies can reliably capture real-time data from isothermal chemistries, the ACA method will facilitate the implementation of dPCR outs

Journal article

Rodriguez-Manzano J, Malpartida-Cardenas K, Moser N, Pennisi I, Cavuto M, Miglietta L, Moniri A, Penn R, Satta G, Randell P, Davies F, Bolt F, Barclay W, Holmes A, Georgiou Pet al., 2020, A handheld point-of-care system for rapid detection of SARS-CoV-2 in under 20 minutes

<jats:title>Abstract</jats:title><jats:p>The COVID-19 pandemic is a global health emergency characterized by the high rate of transmission and ongoing increase of cases globally. Rapid point-of-care (PoC) diagnostics to detect the causative virus, SARS-CoV-2, are urgently needed to identify and isolate patients, contain its spread and guide clinical management. In this work, we report the development of a rapid PoC diagnostic test (&lt; 20 min) based on reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) and semiconductor technology for the detection of SARS-CoV-2 from extracted RNA samples. The developed LAMP assay was tested on a real-time benchtop instrument (RT-qLAMP) showing a lower limit of detection of 10 RNA copies per reaction. It was validated against 183 clinical samples including 127 positive samples (screened by the CDC RT-qPCR assay). Results showed 90.55% sensitivity and 100% specificity when compared to RT-qPCR and average positive detection times of 15.45 ± 4.43 min. For validating the incorporation of the RT-LAMP assay onto our PoC platform (RT-eLAMP), a subset of samples was tested (n=40), showing average detection times of 12.89 ± 2.59 min for positive samples (n=34), demonstrating a comparable performance to a benchtop commercial instrument. Paired with a smartphone for results visualization and geo-localization, this portable diagnostic platform with secure cloud connectivity will enable real-time case identification and epidemiological surveillance.</jats:p><jats:sec><jats:title>One Sentence Summary</jats:title><jats:p>We demonstrate isothermal detection of SARS-CoV-2 in under 20 minutes from extracted RNA samples with a handheld Lab-on-Chip platform.</jats:p></jats:sec>

Journal article

Rodriguez Manzano J, Moser N, Malpartida Cardenas K, Moniri A, Fisarova L, Pennisi I, Boonyasiri A, Jauneikaite E, Abdolrasouli A, Otter J, Bolt F, Davies F, Didelot X, Holmes A, Georgiou Pet al., 2020, Rapid detection of mobilized colistin resistance using a nucleic acid based lab-on-a-chip diagnostic system, Scientific Reports, Vol: 10, ISSN: 2045-2322

The increasing prevalence of antimicrobial resistance is a serious threat to global public health. One of the most concerning trends is the rapid spread of Carbapenemase-Producing Organisms (CPO), where colistin has become the last-resort antibiotic treatment. The emergence of colistin resistance, including the spread of mobilized colistin resistance (mcr) genes, raises the possibility of untreatable bacterial infections and motivates the development of improved diagnostics for the detection of colistin-resistant organisms. This work demonstrates a rapid response for detecting the most recently reported mcr gene, mcr−9, using a portable and affordable lab-on-a-chip (LoC) platform, offering a promising alternative to conventional laboratory-based instruments such as real-time PCR (qPCR). The platform combines semiconductor technology, for non-optical real-time DNA sensing, with a smartphone application for data acquisition, visualization and cloud connectivity. This technology is enabled by using loop-mediated isothermal amplification (LAMP) as the chemistry for targeted DNA detection, by virtue of its high sensitivity, specificity, yield, and manageable temperature requirements. Here, we have developed the first LAMP assay for mcr−9 - showing high sensitivity (down to 100 genomic copies/reaction) and high specificity (no cross-reactivity with other mcr variants). This assay is demonstrated through supporting a hospital investigation where we analyzed nucleic acids extracted from 128 carbapenemase-producing bacteria isolated from clinical and screening samples and found that 41 carried mcr−9 (validated using whole genome sequencing). Average positive detection times were 6.58 ± 0.42 min when performing the experiments on a conventional qPCR instrument (n = 41). For validating the translation of the LAMP assay onto a LoC platform, a subset of the samples were tested (n = 20), showing average detection times o

Journal article

Kalofonou M, Malpartida-Cardenas K, Alexandrou G, Rodriguez-Manzano J, Yu L-S, Miscourides N, Allsopp R, LT Gleason K, Goddard K, Fernandez-Garcia D, Page K, Georgiou P, Ali S, Coombes RC, Shaw J, Toumazou Cet al., 2020, A novel hotspot specific isothermal amplification method for detection of thecommon PIK3CA p.H1047R breast cancer mutation, Scientific Reports, Vol: 10, ISSN: 2045-2322

Breast cancer (BC) is a common cancer in women worldwide. Despite advances in treatment, up to 30% of women eventually relapse and die of metastatic breast cancer. Liquid biopsy analysis of circulating cell-free DNA fragments in the patients’ blood can monitor clonality and evolving mutations as a surrogate for tumour biopsy. Next generation sequencing platforms and digital droplet PCR can be used to profile circulating tumour DNA from liquid biopsies; however, they are expensive and time consuming for clinical use. Here, we report a novel strategy with proof-of-concept data that supports the usage of loop-mediated isothermal amplification (LAMP) to detect PIK3CA c.3140 A > G (H1047R), a prevalent BC missense mutation that is attributed to BC tumour growth. Allele-specific primers were designed and optimized to detect the p.H1047R variant following the USS-sbLAMP method. The assay was developed with synthetic DNA templates and validated with DNA from two breast cancer cell-lines and two patient tumour tissue samples through a qPCR instrument and finally piloted on an ISFET enabled microchip. This work sets a foundation for BC mutational profiling on a Lab-on-Chip device, to help the early detection of patient relapse and to monitor efficacy of systemic therapies for personalised cancer patient management.

Journal article

Cacho-Soblechero M, Malpartida-Cardenas K, Cicatiello C, Rodriguez-Manzano J, Georgiou Pet al., 2020, A dual-sensing thermo-chemical ISFET array for DNA-based diagnostics., IEEE Transactions on Biomedical Circuits and Systems, Vol: 14, Pages: 477-489, ISSN: 1932-4545

This paper presents a 32x32 ISFET array with in-pixel dual-sensing and programmability targeted for on-chip DNA amplification detection. The pixel architecture provides thermal and chemical sensing by encoding temperature and ion activity in a single output PWM, modulating its frequency and its duty cycle respectively. Each pixel is composed of an ISFET-based differential linear OTA and a 2-stage sawtooth oscillator. The operating point and characteristic response of the pixel can be programmed, enabling trapped charge compensation and enhancing the versatility and adaptability of the architecture. Fabricated in 0.18 μm standard CMOS process, the system demonstrates a quadratic thermal response and a highly linear pH sensitivity, with a trapped charge compensation scheme able to calibrate 99.5% of the pixels in the target range, achieving a homogeneous response across the array. Furthermore, the sensing scheme is robust against process variations and can operate under various supply conditions. Finally, the architecture suitability for on-chip DNA amplification detection is proven by performing Loop-mediated Isothermal Amplification (LAMP) of phage lambda DNA, obtaining a time-to-positive of 7.71 minutes with results comparable to commercial qPCR instruments. This architecture represents the first in-pixel dual thermo-chemical sensing in ISFET arrays for Lab-on-a-Chip diagnostics.

Journal article

Malpartida-Cardenas K, Miscourides N, Rodriguez-Manzano J, Yu L-S, Moser N, Baum J, Georgiou Pet al., 2019, Quantitative and rapid Plasmodium falciparum malaria diagnosis and artemisinin-resistance detection using a CMOS Lab-on-Chip platform, Biosensors and Bioelectronics, Vol: 145, ISSN: 0956-5663

Early and accurate diagnosis of malaria and drug-resistance is essential to effective disease management. Available rapid malaria diagnostic tests present limitations in analytical sensitivity, drug-resistance testing and/or quantification. Conversely, diagnostic methods based on nucleic acid amplification stepped forwards owing to their high sensitivity, specificity and robustness. Nevertheless, these methods commonly rely on optical measurements and complex instrumentation which limit their applicability in resource-poor, point-of-care settings. This paper reports the specific, quantitative and fully-electronic detection of Plasmodium falciparum, the predominant malaria-causing parasite worldwide, using a Lab-on-Chip platform developed in-house. Furthermore, we demonstrate on-chip detection of C580Y, the most prevalent single-nucleotide polymorphism associated to artemisinin-resistant malaria. Real-time non-optical DNA sensing is facilitated using Ion-Sensitive Field-Effect Transistors, fabricated in unmodified complementary metal-oxide-semiconductor (CMOS) technology, coupled with loop-mediated isothermal amplification. This work holds significant potential for the development of a fully portable and quantitative malaria diagnostic that can be used as a rapid point-of-care test.

Journal article

Cacho-Soblechero M, Malpartida-Cardenas K, Moser N, Georgiou Pet al., 2019, Programmable Ion-Sensing Using Oscillator-Based ISFET Architectures, IEEE SENSORS JOURNAL, Vol: 19, Pages: 8563-8575, ISSN: 1530-437X

Journal article

Malpartida-Cardenas K, Miscourides N, Rodriguez-Manzano J, Yu LS, Baum J, Georgiou Pet al., 2019, Quantitative and rapid <i>Plasmodium falciparum</i> malaria diagnosis and artemisinin-resistance detection using a CMOS Lab-on-Chip platform

<jats:title>Abstract</jats:title><jats:p>Early and accurate diagnosis of malaria and drug-resistance is essential to effective disease management. Available rapid malaria diagnostic tests present limitations in analytical sensitivity, drug-resistant testing and/or quantification. Conversely, diagnostic methods based on nucleic acid amplification stepped forwards owing to their high sensitivity, specificity and robustness. Nevertheless, these methods commonly rely on optical measurements and complex instrumentation which limit their applicability in resource-poor, point-of-care settings. This paper reports the specific, quantitative and fully-electronic detection of <jats:italic>Plas-modium falciparum</jats:italic>, the predominant malaria-causing parasite worldwide, using a Lab-on-Chip platform developed in-house. Furthermore, we demonstrate on-chip detection of C580Y, the most prevalent single-nucleotide polymorphism associated to artemisinin-resistant malaria. Real-time non-optical DNA sensing is facilitated using Ion-Sensitive Field-Effect Transistors, fabricated in unmodified complementary metal-oxide-semiconductor technology, coupled with loop-mediated isothermal amplification. This work holds significant potential for the development of a fully portable and quantitative malaria diagnostic that can be used as a rapid point-of-care test.</jats:p>

Working paper

Moniri A, Rodriguez-Manzano J, Malpartida-Cardenas K, Yu L-S, Didelot X, Holmes A, Georgiou Pet al., 2019, Framework for DNA quantification and outlier detection using multidimensional standard curves, Analytical Chemistry, Vol: 91, Pages: 7426-7434, ISSN: 0003-2700

Real-time PCR is a highly sensitive and powerful technology for the quantification of DNA and has become the method of choice in microbiology, bioengineering, and molecular biology. Currently, the analysis of real-time PCR data is hampered by only considering a single feature of the amplification profile to generate a standard curve. The current “gold standard” is the cycle-threshold (Ct) method which is known to provide poor quantification under inconsistent reaction efficiencies. Multiple single-feature methods have been developed to overcome the limitations of the Ct method; however, there is an unexplored area of combining multiple features in order to benefit from their joint information. Here, we propose a novel framework that combines existing standard curve methods into a multidimensional standard curve. This is achieved by considering multiple features together such that each amplification curve is viewed as a point in a multidimensional space. Contrary to only considering a single-feature, in the multidimensional space, data points do not fall exactly on the standard curve, which enables a similarity measure between amplification curves based on distances between data points. We show that this framework expands the capabilities of standard curves in order to optimize quantification performance, provide a measure of how suitable an amplification curve is for a standard, and thus automatically detect outliers and increase the reliability of quantification. Our aim is to provide an affordable solution to enhance existing diagnostic settings through maximizing the amount of information extracted from conventional instruments.

Journal article

Yu L-S, Rodriguez-Manzano J, Malpartida-Cardenas K, Sewell T, Bader O, Armstrong-James D, Fisher MC, Georgiou Pet al., 2019, Rapid and sensitive detection of azole-resistant Aspergillus fumigatus by tandem-repeat loop-mediated isothermal amplification, Journal of Molecular Diagnostics, Vol: 21, Pages: 286-295, ISSN: 1525-1578

Invasive human fungal infections caused by multi-azole resistant Aspergillus fumigatus are associated with increasing rates of mortality in susceptible patients. Current methods of diagnosing infections caused by multi-azole resistant A. fumigatus are, however, not well suited for use in clinical point-of-care testing or in the field. Loop-mediated isothermal amplification (LAMP) is a widely used method of nucleic acid amplification with rapid and easy-to-use features, making it suitable for use in different resource settings. Here, we developed a LAMP assay to detect a 34 bp tandem repeat, named TR34-LAMP. TR34 is a high-prevalence allele that, in conjunction with the L98H single nucleotide polymorphism, is associated with the occurrence of multi-azole resistance in A. fumigatus in the environment and in patients. This process was validated with both synthetic double stranded DNA and genomic DNA prepared from azole-resistant isolates of A. fumigatus. Use of our assay resulted in rapid and specific identification of the TR34 allele with high sensitivity, detecting down to 10 genomic copies per reaction within 25 minutes. Fluorescent and colorimetric detections were used for the analysis of 11 clinical isolates as cross validation. These results show that the TR34-LAMP assay has the potential to accelerate the screening of clinical and environmental A. fumigatus to provide a rapid and accurate diagnosis of azole resistance, which current methods struggle to achieve.

Journal article

Rodriguez-Manzano J, Moniri A, Malpartida-Cardenas K, Dronavalli J, Davies F, Holmes A, Georgiou Pet al., 2019, Simultaneous single-channel multiplexing and quantification of carbapenem-resistant genes using multidimensional standard curves, Analytical Chemistry, Vol: 91, Pages: 2013-2020, ISSN: 0003-2700

Multiplexing and quantification of nucleic acids, both have, in their own right, significant and extensive use in biomedical related fields. Currently, the ability to detect several nucleic acid targets in a single-reaction scales linearly with the number of targets; an expensive and time-consuming feat. Here, we propose a new methodology based on multidimensional standard curves that extends the use of real-time PCR data obtained by common qPCR instruments. By applying this novel method-ology, we achieve simultaneous single-channel multiplexing and enhanced quantification of multiple targets using only real-time amplification data. This is obtained without the need of fluorescent probes, agarose gels, melting curves or sequencing analysis. Given the importance and demand for tackling challenges in antimicrobial resistance, the proposed method is ap-plied to four of the most prominent carbapenem-resistant genes: blaOXA-48, blaNDM, blaVIM and blaKPC, which account for 97% of the UK's reported carbapenemase-producing Enterobacteriaceae.

Journal article

Rodriguez-Manzano J, Miscourides N, Malpartida-Cardenas K, Pennisi I, Moser N, Holmes A, Georgiou Pet al., 2019, Rapid detection of <i>Klebsiella pneumoniae</i> using an auto-calibrated ISFET-array Lab-on-Chip platform, IEEE Biomedical Circuits and Systems Conference (BioCAS), Publisher: IEEE, ISSN: 2163-4025

Conference paper

Malpartida-Cardenas K, Rodriguez-Manzano J, Yu L-S, Delves M, Nguon C, Chotivanich K, Baum J, Georgiou Pet al., 2018, Allele-specific isothermal amplification method using novel unmodified self-stabilizing competitive primers, Analytical Chemistry, Vol: 90, Pages: 11972-11980, ISSN: 0003-2700

Rapid and specific detection of single nucleotide polymorphisms (SNPs) related to drug resistance in infectious diseases is crucial for accurate prognostics, therapeutics and disease management at point-of-care. Here, we present a novel amplification method and provide universal guidelines for the detection of SNPs at isothermal conditions. This method, called USS-sbLAMP, consists of SNP-based loop-mediated isothermal amplification (sbLAMP) primers and unmodified self-stabilizing (USS) competitive primers that robustly delay or prevent unspecific amplification. Both sets of primers are incorporated into the same reaction mixture, but always targeting different alleles; one set specific to the wild type allele and the other to the mutant allele. The mechanism of action relies on thermodynamically favored hybridization of totally complementary primers, enabling allele-specific amplification. We successfully validate our method by detecting SNPs, C580Y and Y493H, in the Plasmodium falciparum kelch 13 gene that are responsible for resistance to artemisinin-based combination therapies currently used globally in the treatment of malaria. USS-sbLAMP primers can efficiently discriminate between SNPs with high sensitivity (limit of detection of 5 × 101 copies per reaction), efficiency, specificity and rapidness (<35 min) with the capability of quantitative measurements for point-of-care diagnosis, treatment guidance, and epidemiological reporting of drug-resistance.

Journal article

Rodriguez-Manzano J, Moniri A, Malpartida-Cardenas K, Dronavalli J, Davies F, Holmes A, Georgiou Pet al., 2018, Simultaneous single-channel multiplex and quantification of carbapenem-resistant genes using multidimensional standard curves

<jats:title>ABSTRACT</jats:title><jats:p>Multiplexing and absolute quantification of nucleic acids, both have, in their own right, significant and extensive use in biomedical related fields, especially in point-of-care applications. Currently, the ability to detect several nucleic acid targets in a single-reaction scales linearly with the number of targets; an expensive and time-consuming feat. Here, we propose a new methodology based on multidimensional standard curves that extends the use of real-time PCR data obtained by common qPCR instruments. By applying this novel methodology, we achieve simultaneous single-channel multiplexing and enhanced quantification of multiple targets using only real-time amplification data. This is obtained without the need of fluorescent probes, agarose gels, melting curves or sequencing analysis. Given the importance and demand for tackling challenges in antimicrobial resistance, the proposed method is applied to the four most prominent carbapenem-resistant genes:<jats:italic>bla</jats:italic><jats:sub>OXA-48</jats:sub>,<jats:italic>bla</jats:italic><jats:sub>NDM</jats:sub>,<jats:italic>bla</jats:italic><jats:sub>VIM</jats:sub>and<jats:italic>bla</jats:italic><jats:sub>KPC</jats:sub>, which account for 97% of the UK’s reported carbapenemase-producing Enterobacteriaceae.</jats:p>

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=01262100&limit=30&person=true