Imperial College London

DrKrystianMikolajczyk

Faculty of EngineeringDepartment of Electrical and Electronic Engineering

Reader in Computer Vision
 
 
 
//

Contact

 

+44 (0)20 7594 6220k.mikolajczyk

 
 
//

Location

 

Electrical EngineeringSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@inproceedings{Schubert:2013,
author = {Schubert, F and Mikolajczyk, K},
pages = {485--491},
title = {Performance evaluation of image filtering for classification and retrieval},
year = {2013}
}

RIS format (EndNote, RefMan)

TY  - CPAPER
AB - Much research effort in the literature is focused on improving feature extraction methods to boost the performance in various computer vision applications. This is mostly achieved by tailoring feature extraction methods to specific tasks. For instance, for the task of object detection often new features are designed that are even more robust to natural variations of a certain object class and yet discriminative enough to achieve high precision. This focus led to a vast amount of different feature extraction methods with more or less consistent performance across different applications. Instead of fine-tuning or re-designing new features to further increase performance we want to motivate the use of image filters for pre-processing. We therefore present a performance evaluation of numerous existing image enhancement techniques which help to increase performance of already well-known feature extraction methods. We investigate the impact of such image enhancement or filtering techniques on two state-of-the-art image classification and retrieval approaches. For classification we evaluate using a standard Pascal VOC dataset. For retrieval we provide a new challenging dataset. We find that gradient-based interest-point detectors and descriptors such as SIFT or HOG can benefit from enhancement methods and lead to improved performance.
AU - Schubert,F
AU - Mikolajczyk,K
EP - 491
PY - 2013///
SP - 485
TI - Performance evaluation of image filtering for classification and retrieval
ER -